
i

NUS Student version [F34]

iii

A	Framework	
for	

Understanding	
Systems	Engineering

Dr Joseph E. Kasser
CEng, CM, FIET, CMALT, G3ZCZ

Second edition 2013
First edition 2007

First edition produced by Dr Joseph Kasser with the assistance of a grant
from the Leverhulme Trust to Cranfield University.

The author and publisher have made reasonable efforts to ensure that the
information published in this book is correct, and cannot and do not, assume
responsibility for the validity of the information and the consequences of its
uses.

Published by The Right Requirement
50 Crane Way, Cranfield, Bedfordshire, MK43 0HH, England.

The right of Joseph Kasser to be identified as the author of this work has
been asserted by him in accordance with the Copyright, Designs and Patents
Act 1988.

Copyright © 2013 Joseph Eli Kasser
All rights reserved.

ISBN-13: 978-1482758160
ISBN-10: 1482758164

Visit https://www.createspace.com/1482758164 to order additional copies.

v

Dedication
To Annie, Belle, Brock, Daliah, Jesse, Martha, Molly and Wendy, who were
there for me when I needed them.Acknowledgments
Co-authors of the original papers upon which some of the Chapters are
based or quoted at length – Dave Denzler, Stephen Cook, Tim Ferris, Moti
Frank, Derek K. Hitchins, Thomas V. Huynh, Angus Massie, Sharon Shoshany,
Kent Palmer, Xuan-Linh Tran, Victoria R. Williams and Yang Yang Zhao.

Friends who reviewed the manuscript and made constructive com-
ments, Piet Beukman, Amihud Hari, and Mary J Simpson.Previously by Joseph E. Kasser

(on the subject of systems engineering)

Holistic Thinking: Creating innovative solutions to complex problems, Cre-
atespace, 2013.

Applying Total Quality Management to Systems Engineering, Artech House,
1996.

vi

About the author
Joseph Kasser has been a practicing systems engineer for 40+ years and an
academic for about 14 years. He is a Fellow of the Institution of Engineering
and Technology (IET), an INCOSE Fellow, the author of “A Framework for
Understanding Systems Engineering” and "Applying Total Quality Manage-
ment to Systems Engineering" and many conference and symposia papers.
He is a recipient of the National Aeronautical and Space Administration’s
(NASA) Manned Space Flight Awareness Award (Silver Snoopy) for quality
and technical excellence for performing and directing systems engineering
and other awards. He holds a Doctor of Science in Engineering Management
from The George Washington University. He is a Certified Manager and
holds a Certified Membership of the Association for Learning Technology.
He has performed and directed systems engineering in the UK, United States
of America (US), Israel and Australia. He gave up his positions as a Deputy
Director and DSTO Associate Research Professor at the Systems Engineering
and Evaluation Centre at the University of South Australia in early 2007 to
move to the UK to develop the world’s first immersion course in systems
engineering as a Leverhulme Visiting Professor at Cranfield University. He is
currently a Visiting Associate Professor at the National University of Singa-
pore.

vii

Preface to Second Edition
The research into the nature of systems engineering discussed in the collect-
ed papers in the first edition did not stop with the publication of the volume.
It split into two areas:
 Systems thinking which is a critical skill needed by systems engineers.

This research picked up Kline’s dictum quoted in Section 18.4 and the
statement that systems engineering can be considered as being docu-
mented in the literature on critical thinking, systems thinking, problem
solving in the activities that take place in the Area of Concern discussed
in Section 21.4.1 and determined the need to go beyond systems think-
ing to create innovative solutions to complex problems. The research
produced the nine holistic thinking perspectives (HTP) publishing along
the way (Kasser and Mackley, 2008; Kasser, 2009; Kasser, 2011a). The
research also investigated problem-solving (Kasser, 2010; 2011b; Kasser,
2012), one of the major activities performed by systems engineers.
These papers are not included in this volume because they have been
expanded into a practical guide on how to create innovative solutions to
complex problems and published as a separate volume (Kasser, 2013),
see https://www.createspace.com/4171581.

 Systems engineering which continued studying systems engineering
from different perspectives including developing a framework for
benchmarking competencies of systems engineers described in Chapter
24. Chapter 7 was inserted into this edition as a precursor to Chapter 24
and because it is cited several times in the book. This research is docu-
mented in papers now updated, and included in Chapters 22 to 29. The
research concluded that systems engineering is an enabling discipline
which provides a set of thinking tools used in many different activities in
the same way that mathematics is an enabling discipline providing a set
of calculating tools used in many different activities as described in
Chapter 29.

In preparing this manuscript, many of the typographical and formatting
errors that crept into the first edition have been corrected.

The research has not stopped with the publication of this updated edi-
tion. It has focused on developing better ways of teaching systems engi-
neering, and providing teaching case studies to help students grasp the prin-
ciples of systems engineering more effectively.

viii

ix

Contents
1 Introduction.. 1
2 Systems engineering: myth or reality...11

2.1 Defining systems engineering .. 11
2.2 Management and systems engineering ... 13
2.3 Outside the box .. 14
2.4 Concurrent engineering, Total Quality Management, et al. 16
2.5 The conference ... 18
2.6 The temporal perspective... 18
2.7 Conclusions... 19

3 There's no place for managers in a quality organization21

3.1 Root causes of the failures ... 21
3.2 The need for a paradigm shift .. 24
3.3 The Excellence paradigm.. 24
3.4 Summary .. 46

4 Systems engineering the Excellence organization47

4.1 Mapping the organization into processes and transactions 48
4.2 Identifying customers ... 49
4.3 Identifying metrics.. 51
4.4 Metrics 51
4.5 Guidelines for identifying metrics... 51
4.6 Developing the metrics... 54
4.7 Identifying the non-value adding process element 54
4.8 Identifying the reengineering plan ... 55
4.9 The change process .. 55
4.10Support and resistance to change.. 62
4.11Implement the reward and recognition system 63
4.12Summary .. 64

5 What do you mean you can't tell me how much of my project has
been completed? ...65

5.1 Requirements ... 65
5.2 Categorized Requirements in Process .. 68
5.3 Conclusions... 74

6 What do you mean you can’t tell me if my project is in trouble? .75

x

6.1 A methodology for developing metrics for predicting risks of project
failures ...76

6.2 Summary of student papers..77
6.3 The survey ...77
6.4 Survey results ..80
6.5 Further analysis...80
6.6 The CHAOS study ..85
6.7 Presence of risk-indicators in ISO 9001 and the software-CMM.........86
6.8 The development of metrics to identify the presence of these

indicators ..86
6.9 Deficiencies in the study..89
6.10Conclusions and recommendations ..89
6.11Areas for further study..90

7 The certified systems engineer – it’s about time!91

7.1 Background...91
7.2 The certified systems engineer ...93
7.3 Levels of certification ..95
7.4 The prototyping approach ..95
7.5 Conclusions ...96
7.6 Summary...96

8 A framework for requirements engineering.................................97

8.1 Anticipatory testing ..98
8.2 Change management ...99
8.3 The FREDIE paradigm..101
8.4 The value of a FREDIE ...103
8.5 Summary...104

9 Enhancing the role of test and evaluation in the acquisition
process to increase the probability of the delivery of equipment
that meets the needs of the users ...105

9.1 The expansion of T&E ...106
9.2 T&E in the United States Air Force ..107
9.3 Enhancing the traditional role of T&E...108
9.4 How T&E can reduce some categories of missing requirements110
9.5 Determining the capability of “as-delivered” equipment112
9.6 Requirements and capability ..112
9.7 Software T&E ..113
9.8 Summary...114

xi

10 Systems engineers are from Mars, software engineers are from
Venus...115

10.1Training and Background Differences .. 118
10.2The role of systems engineer in the SLC ... 125
10.3The use of concepts .. 126
10.4Discussion... 128
10.5Bridging the communications gap between systems and software

engineers.. 129
10.6Summary .. 131
10.7Conclusion .. 131

11 Requirements for flexible systems ...133

11.1The context of a system.. 133
11.2The need for flexibility .. 134
11.3Requirements for flexibility .. 135
11.4Attributes of flexibility .. 135
11.5Capability drives requirements... 136
11.6Just in time requirements ... 139
11.7The backcasting approach.. 140
11.8Examples of flexible and non-flexible systems 140
11.9Lesson Learned from these systems ... 148
11.10 Conclusions .. 150

12 A framework for a systems engineering body of knowledge151

12.1Potential Frameworks .. 155
12.2A framework for the SEBoK .. 161
12.3Perspectives from the HKMF .. 164
12.4Summary .. 165

13 The cataract methodology for systems and software acquisition....
...167

13.1Budget tolerant Build planning .. 170
13.2The Cataract methodology... 173
13.3Contractual boundaries.. 178
13.4Changes.. 179
13.5The configuration control process .. 180
13.6The Decision ... 183
13.7The suite of tools for configuration control...................................... 184
13.8The Configuration Control Board ... 184
13.9Improving the CCB.. 185
13.10 Lifecycle implications... 186
13.11 The cataract perspective ... 187

xii

13.12 Summary ..187
13.13 Conclusion ..188

14 Managing Systems of Systems ...189

14.1Introduction ..189
14.2One System ...189
14.3The external perspective ...191
14.4The cost-effective SDLC for a single system192
14.5Another perspective on the system of systems.................................192
14.6From the perspective of self-regulating systems193
14.7Gaining control of the system of systems ...196
14.8The suite of tools...196
14.9Summary...197

15 Systems engineering: an alternative management paradigm?...199

15.1Introduction ..199
15.2The Need for a SEBoK..200
15.3Organization of the SEBoK ..201
15.4Systems engineering as an alternative paradigm.............................202
15.5Conclusions ...208

16 Does object-oriented system engineering eliminate the need for
requirements? ...209

16.1The object-oriented paradigm ..211
16.2Different perspectives of systems ...213
16.3Enhancing systems engineering..215
16.4The (process) interface between systems and software engineering

...215
16.5Is there an alternative to “requirements” ...216
16.6The UML Perspective ..217
16.7Replacing “requirements” by properties...219
16.8The next generation of requirements tools.......................................220
16.9True object-oriented system engineering ...221
16.10 Conclusions...221

17 Object-oriented requirements engineering and management...223

17.1Requirements engineering and management224
17.2The object-oriented paradigm ..225
17.3Object-oriented systems engineering ...225
17.4Research Question ..226
17.5Requirements drive the work ..227
17.6Adding other object–oriented properties and processes to the QSE 230

xiii

17.7Applying the concept of inheritance... 233
17.8Populating the properties of the requirement 234
17.9Benefits of the object-oriented approach to requirements engineering

... 235
17.10 Future research.. 237
17.11 Summary.. 238
17.12 Conclusions .. 238
17.13 Recommendations ... 238

18 Reducing and managing complexity ...241

18.1The various definitions of the word “system” 241
18.2Complexity is a function of poor internal boundaries 245
18.3Cognitive filters .. 246
18.4Introducing Simplification .. 249
18.5Yet another definition of the term “system” 251
18.6Perspectives.. 252
18.7Simplifying the process of systems analysis 253
18.8Complexity vs. simplicity .. 255
18.9Case Study Luz SEGS-1.. 257
18.10 Redrawing the contractor sub-contractor boundaries in

certain types of Defence contracts ... 261
18.11 Yet another definition of systems engineering 265
18.12 Summary.. 265
18.13 Areas for future research... 266

19 Process architecting ...269

19.1The three current organisational functions in the development of
systems... 270

19.2Mapping the three roles... 271
19.3An alternative perspective.. 272
19.4Introducing the role of process architect.. 273
19.5The role of process architecting ... 274
19.6Interdependence in the Roles Rectangle .. 278
19.7Mapping the organisational functions to the organisational roles .. 279
19.8Traits for a process-architect.. 281
19.9Summary .. 281
19.10 Conclusions .. 281

20 Eight deadly defects in systems engineering and how to fix them
283

20.1The selection of independent alternative solutions.......................... 284
20.2The misuse of the V diagram.. 284

xiv

20.3The lack of a standard process for planning a project286
20.4The abandonment of the Waterfall model289
20.5Unanswered and unasked questions ..289
20.6The lack of a metric for the goodness of requirements290
20.7A focus on technological solutions..292
20.8The need to focus on people as well as process................................293
20.9Summary...295
20.10 Conclusion ..295

21 Introducing a framework for understanding systems engineering ...
...297

21.1The need for a framework for understanding systems engineering .299
21.2Systems engineering as a discipline ..299
21.3Moving towards a discipline ...300
21.4Elements relevant to research in a discipline....................................300
21.5Requirements for a framework...304
21.6Rationale for the requirements for the framework304
21.7Candidate Frameworks ...306
21.8Evaluating the frameworks against the requirements307
21.9The Hitchins-Kasser-Massie Framework ...307
21.10 Meeting the requirements for the framework313
21.11 Other insight from the framework324
21.12 Further Research ..325
21.13 Summary ..327
21.14 Conclusions...328

22 Luz: from light to darkness: lessons learned from the solar system .
...329

22.1Introduction ..329
22.2The FRAT approach ...330
22.3Background to the case study...331
22.4At the system level ..332
22.5FRAT at the system level ...335
22.6FRAT at the subsystem level ...337
22.7The LOC subsystem ...342
22.8Discussion on the use of FRAT...348
22.9Lessons learned from the project..348
22.10 Meta-lessons learned ...351
22.11 Summary ..351

23 Reengineering systems engineering...353

23.1Evolution of the role of systems engineering353

xv

23.2Separating out the systems engineering knowledge........................ 357
23.3The five types of systems engineers ... 363
23.4A benchmark of systems engineering postgraduate degree syllabi . 364
23.5Hypothesis for a reason for the failure of systems engineering 365
23.6Recommendations.. 368
23.7Summary .. 370
23.8Conclusion .. 370

24 A framework for benchmarking competency assessment models...
...371

24.1Introduction.. 371
24.2The need for competent systems engineers 373
24.3Roles and activities of systems engineers .. 374
24.4Assessing systems engineering competency 376
24.5Comparing the different competency models 384
24.6A two-dimensional competency maturity model framework for

benchmarking the competency models of systems engineers 388
24.7Benchmarking the nine competency models.................................... 394
24.8Future research .. 394
24.9Using the CMMF as a competency model .. 395
24.10 Summary and conclusions ... 399

25 Unifying the different systems engineering processes401

25.1Introduction.. 401
25.2The myth of the single systems engineering process 402
25.3The overlap between some versions of the systems engineering

process and the problem solving process ... 405
25.4The way iteration of/in the systems engineering process is taught . 406
25.5The misuse of functional diagrams to represent processes 408
25.6The common systems engineering process 409
25.7Lean and agile systems engineering... 410
25.8Summary .. 411
25.9Conclusions... 411

26 Seven systems engineering myths and the corresponding realities.
...413

26.1Introduction.. 413
26.2Myth 1: There are Standards for systems engineering..................... 414
26.3Myth 2: The “V” model of the systems engineering process 417
26.4Myth 3: Follow the systems engineering process and all will be well

... 419
26.5Myth 4: Complexity needs new tools and techniques 420

xvi

26.6Myth 5: Systems of systems are a different class of problem and need
new tools and techniques ...422

26.7Myth 6: Changing requirements are a cause of project failure so get
the requirements up front...424

26.8Myth 7: The single systems engineering process424
26.9Summary...425
26.10 Conclusion ..425

27 Seven principles for systems engineered solution systems427

27.1The camps in systems engineering ...427
27.2Towards unification ..427
27.3Seven principles for systems engineered solution systems429
27.4Discussion ...436
27.5Summary...437
27.6Conclusion...437

28 Getting the right requirements right..439

28.1The perennial problem of poor requirements439
28.2The perspectives perimeter...440
28.3Situational analysis ...441
28.4The two requirements paradigms...449
28.5Discussion ...450
28.6Upgrading the A paradigm for the 21st century...............................451
28.7Discussion ...454
28.8Summary...454
28.9Conclusion...455

29 Yes systems engineering, you are a discipline457

29.1Systems engineering in NCOSE/INCOSE ..457
29.2The seven camps in systems engineering ...458
29.3Reconciling the camps ..463
29.4Testing the hypothesis ..465
29.5Discussion ...467
29.6Conclusions ...470

30 Postscript...473
31 Acronyms...475
32 References...479
33 Index..505

xvii

Figures
Figure 1-1 Overlapping functions in an organisation 6
Figure 1-2 Traditional black box representation ... 7
Figure 1-3 Systems are defined by their boundaries....................................... 7
Figure 2-1 Optimal Cost of SDLC Phase ... 13
Figure 2-2 Three streams of work ... 15
Figure 2-3 The line of no-return .. 16
Figure 2-4 Symbology for organizations and processes 17
Figure 3-1 The process improvement cycle... 23
Figure 3-2 The PPPT model ... 26
Figure 3-3 Organisational engineering in the Excellence organization 27
Figure 3-4 The Excellence organization paradigm... 27
Figure 3-5 The buyer-supplier perspective.. 29
Figure 3-6 Products and services... 30
Figure 3-7 Division of labour ... 33
Figure 3-8 The Product-Activity-Milestone chart (Kasser, 1995) 35
Figure 3-9 Comparative position of organisations within Industry 42
Figure 3-10 Elements of a reward and recognition system........................... 43
Figure 3-11 Performance evaluation chart.. 45
Figure 3-12 Performance evaluation chart for two time periods.................. 46
Figure 4-1 The organization as a process (ideal) ... 48
Figure 4-2 Multiple processes in series ... 49
Figure 4-3 Ensuring control is effective ... 50
Figure 4-4 Traditional hierarchical organization ... 50
Figure 4-5 The generic process.. 52
Figure 4-6 Cost of typical process with defects ... 53
Figure 4-7 Process improvement spiral... 56
Figure 4-8 Adaptive and innovative changes .. 57
Figure 4-9 Improvements over time.. 58
Figure 4-10 The reengineering point... 59
Figure 4-11 The Road to Change ... 60
Figure 4-12 Chasing a moving target... 60
Figure 4-13 Convergence... 61
Figure 4-14 Resistance to change by management level 62
Figure 5-1 Ideal SDLC... 66
Figure 5-2 Actual SDLC .. 67
Figure 5-3 The anticipatory testing SDLC .. 67
Figure 5-4 CRIP chart entry changes over time ... 70
Figure 5-5 CRIP chart for category X.. 71
Figure 8-1 Anticipatory testing view of the SDLC .. 99
Figure 8-2 Conceptual Process for accepting requirements 99
Figure 8-3 The FREDIE concept.. 102

xviii

Figure 9-1 View of the SLDC from the front end..106
Figure 9-2 View of the SDLC from the T&E perspective...............................107
Figure 9-3 Building the right system ..109
Figure 9-4 Traditional requirements flow down ..110
Figure 9-5 Mission generic requirements ..111
Figure 9-6 Kiviat and bar chart comparison ...113
Figure 10-1 The systems and software engineers117
Figure 11-1 The context for the acquisition of a system133
Figure 11-2 Evolution in context ..134
Figure 11-3 Part of the LuZ SEGS-1 system ..142
Figure 11-4 The Luz sun sensor..144
Figure 12-1 Proposed 2D Hitchins-Kasser-Massie SEBoK framework..........160
Figure 12-2 Badaway’s place in the frame...161
Figure 12-3 Sage’s place in the frame..162
Figure 12-4 Checkland’s place in the frame...162
Figure 12-5 Mapping activities into the frame ..163
Figure 12-6 Current focus of INCOSE mapped into the frame.....................163
Figure 13-1 The Waterfall methodology..168
Figure 13-2 The chaotic view of the waterfall ...170
Figure 13-3 DERA evolutionary lifecycle (DERA, 1997)173
Figure 13-4 Configuration control view of Waterfall177
Figure 13-5 The cataract methodology..177
Figure 13-6 The Build cycle view of the SLC...179
Figure 13-7 The typical impact of a change request on WBS elements.......180
Figure 13-8 Typical sensitivity analysis graph ..181
Figure 13-9 Problem solving feedback loop...183
Figure 13-10 Elements of a typical CCB ...184
Figure 13-11 A more effective CCB ..186
Figure 14-1 The static system acquisition..190
Figure 14-2 The dynamic system acquisition ...190
Figure 14-3 System with CCB ...192
Figure 14-4 Controlled phased parallel evolution..193
Figure 14-5 Traditional hierarchical organisation ..194
Figure 14-6 Comparison between system of system and Meta-system views

...194
Figure 14-7 The organization as a system..195
Figure 14-8 Self-regulating systems...195
Figure 14-9 Adding control to self-regulating systems196
Figure 16-1 Process-product production sequences213
Figure 16-2 The object view...220
Figure 17-1 The gap in object-oriented systems engineering......................225
Figure 17-2 Requirements drive the work (Kasser, 1995)227
Figure 17-3 Tool to Ingest and Elucidate Requirements (TIGER)231
Figure 17-4 Populating the properties of the requirement235

xix

Figure 17-5 Priority profile .. 236
Figure 17-6 Risk profile.. 237
Figure 18-1 Generic representation of a system... 244
Figure 18-2 A more realistic representation of a system which takes external

effects into account .. 245
Figure 18-3 Properties of a system.. 248
Figure 18-4 Representation of a system without emergent properties...... 248
Figure 18-5 Internal and external views of a system................................... 250
Figure 18-6 Hierarchy of systems .. 251
Figure 18-7 Abstraction process leading to complexity 253
Figure 18-8 Abstracting various views directly from the area of interest ... 254
Figure 18-9 Railroad buffers for signal passing ... 259
Figure 18-10 Testable software architecture .. 260
Figure 18-11 Multiple award set aside scenario ... 263
Figure 18-12 Vertical set-aside scenario ... 264
Figure 19-1 Overlapping organizational roles in the development of systems

.. 270
Figure 19-2 Mapping organisational functions.. 272
Figure 19-3 The Roles Rectangle ... 273
Figure 19-4 The process improvement mountain 277
Figure 19-5 Role of systems engineer in one organisation 279
Figure 19-6 Role of system engineer in another organisation 280
Figure 20-1 The V diagram for software development (Rook, 1986) 285
Figure 20-2 The three dimensions to the V diagram (Forsberg and Mooz,

1991) ... 285
Figure 20-3 Typical approach to planning a project 287
Figure 20-4 Process for starting a task .. 287
Figure 21-1 Elements relevant to any piece of research (Checkland and

Holwell, 1998: p 13) .. 301
Figure 21-2 ISO 52888 systems engineering processes............................... 302
Figure 21-3 The HKMF for understanding systems engineering 310
Figure 21-4 Cook’s classroom version of the HKMF 314
Figure 21-5 Traditional systems engineering .. 314
Figure 21-6 Military platforms... 315
Figure 21-7 Contemporary test and evaluation .. 315
Figure 21-8 Information systems... 315
Figure 21-9 Capability development ... 316
Figure 21-10 Overlay of areas ... 317
Figure 21-11 The process for the engineering of complex systems 319
Figure 21-12 A service and support system .. 320
Figure 21-13 ANSI/EIA-632 egg diagram ... 325
Figure 21-14 Focus of INCOSE symposia papers 1994-2006 327
Figure 22-1The FRAT approach ... 330
Figure 22-2 FRAT elaborated down the hierarchy 331

xx

Figure 22-3 Problem-solving view of the Waterfall332
Figure 22-4 Part of the design choices at the subsystem level338
Figure 22-5 Part of the design choices for the LOC......................................338
Figure 23-1 JAXA Project management and systems engineering (JAXA, 2007)

...358
Figure 23-2 Mapping Types into SDLC ...369
Figure 24-1 Two dimensional assessments..377
Figure 25-1 IEEE 1220 Systems Engineering Process403
Figure 25-2 System Lifecycle functions (Blanchard and Fabrycky, 1981)403
Figure 25-3 The SIMILAR process (Bahill and Gissing, 1998)403
Figure 25-4 A Typical System Lifecycle (UNiSA, 2006)406
Figure 25-5 Gantt chart representation of iteration....................................408
Figure 26-1 When costs are committed lifecycle...415
Figure 26-2 Increase in pages in Standards over time416
Figure 26-3 Example of the V Model (Caltrans, 2007)417
Figure 26-4 Redrawing the Waterfall model..418
Figure 27-1 The consequences of not having a CONOPS.............................432
Figure 28-1 Holistic thinking perspectives (structural view)........................440
Figure 28-2 Holistic thinking perspectives ...441
Figure 28-3 System design process (Bahill and Dean, 1997)........................443
Figure 28-4 The requirements discovery process (Bahill and Dean, 1997)..445
Figure 28-5 One example of the B paradigm (Guo, 2010)451
Figure 28-6 CONOPS, functions and requirements......................................452
Figure 28-7 Hitchins problem solving process in the early stages of the SDLC

...453
Figure 28-8 CONOPS drives work...454
Figure 29-1 The Type V systems engineer ...471

xxi

Tables
Table 1-1 Cross Reference from Chapter to Conference Paper 3
Table 6-1 Initial findings .. 78
Table 6-2 The talley results ... 81
Table 6-3 The results by priority (top priority first)....................................... 81
Table 6-4 Top seven causes... 82
Table 6-5 Risk indicators with little differences between perception of

managers and non-managers ... 82
Table 6-6 Risk-indicators receiving the largest number of disagreements ... 84
Table 6-7 Risk-indicators receiving the least number of agreements as causes

of project failure ... 84
Table 6-8 The correlation between this study and the CHAOS study 85
Table 6-9 Comparison with ISO 9001 and CMM ... 87
Table 11-1 Capability of inventory items in various scenarios 137
Table 11-2 JSF variations ... 147
Table 12-1 A selection of definitions of systems engineering as published in

chronological order ... 152
Table 21-1 Methodologies in the problem context..................................... 306
Table 21-2 Shenhar and Bonen’s project classification by technology

uncertainty.. 313
Table 21-3 Comparison of September – December 1995 proposals........... 323
Table 23-1 Analysis and systems thinking ... 361
Table 23-2 Types of knowledge (Woolfolk, 1998) 365
Table 23-3 Failure data from GAO report 06-368, 2006 366
Table 23-4 Focus of Standards – chronological order 368
Table 24-1 Glossary ... 372
Table 24-2 Arrangement of competencies in the nine competency models

.. 383
Table 24-3 Comparison of proficiency levels in the competency models ... 386
Table 24-4 Factors conducive to innovation ... 392
Table 24-5 Mapping Types into abilities.. 393
Table 24-6 A Competency Model Maturity Framework (CMMF) for Systems

Engineers... 396
Table 24-7 Comparison of competency models .. 397
Table 25-1 Two versions of the problem solving process 405

Chapter 1 Introduction

1

1Introduction
Systems engineering started as an approach to solving the complex prob-
lems facing the defence and aerospace industries in the middle of the 20th
century (Johnson, 1997). However it has since evolved to become a pre-
ferred approach for identifying and solving the problems faced in the course
of acquiring and maintaining the complex systems that underpin modern
21st century civilization. Consequently, the demand for systems engineers is
growing and it is becoming increasingly recognised as providing a career
path to the top of the organization.

However, if you pose the question “what is systems engineering?” to a
number of systems engineers, you will get a different answer from each of
them. The reason for this situation is that systems engineering is still not a
recognised engineering discipline but is evolving into one as documented in
this book. Even so, training as a systems engineer will allow you to develop
skills and competencies for successful careers in many different industries.
Why is this? Well while systems engineering has been associated with high
technology and computers, its concepts are just as applicable in other set-
tings. For example, as a musical metaphor, playing an instrument is akin to
computer programming, composing a symphony is akin to software engi-
neering, but orchestrating the performance and ensuring that all the neces-
sary resources for the performance to take place and conducting the sym-
phony is akin to systems engineering. In short, in becoming a systems engi-
neer:

 You will develop an understanding of the technology underpinning our
modern civilization. You will also develop an understanding of the rela-
tionship between the components both technical and non-technical that
make up the systems upon which our lifestyles depend.

 You will develop skills that will allow you to focus on the real problem in
any situation and apply appropriate tools and methodologies for provid-
ing a solution to the problem, especially non-textbook problems.

This book1:

1 The use of the dot point format is deliberate. It enables you to quickly identify and
read pertinent information.

2013

Chapter 1 Introduction

2

 Will not make you a systems engineer. It will however, help you under-
stand the nature of systems engineering.

 Applies the holistic thinking (Kasser, 2013) to the process, the product
being produced and the organisational environment in which the pro-
cess is producing the product.

 Views systems engineering from various perspectives including man-
agement and quality, and offers suggestions for improvement based on
the authors’ experience and the literature.

 Offers complimentary and sometimes conflicting conclusions from the
different views of systems engineering leading to the hypothesis that
the problem of understanding systems engineering may indeed be a
wicked problem (Rittel and Webber, 1973) discussed in Chapter 21.

 Documents progress along an unfinished journey of research and explo-
ration into the nature and application of systems engineering that began
more than 15 years ago2. The core content of each Chapter in this book
has already been published in the proceedings of International confer-
ences on systems engineering, software engineering and engineering
management, and has since been updated. Where the topic was cov-
ered by more than one paper, the papers have been combined to form
the Chapter. The original papers and the Chapters in this book are cor-
related in Table 1-1.

 Brings the material together for the first time for a wider audience than
the conference participants, namely systems and software engineers,
managers, educators of systems and software engineers and managers,
and even aspiring systems and software engineers and managers is de-
signed to make you think about systems engineering and project man-
agement, develop an understanding of their nature and be able to tailor
them to the specific situation you find yourself in to optimize the pro-
cess, the product being produced and the organizational environment.

The development, operations and maintenance of systems and software
are performed in an organisation. Represent that organisation by the func-
tions drawn within a boundary as shown in Figure 1-1. The functions are
grouped as project management, systems engineering, test and evaluation
(T&E) sometimes also known as Quality, and a host of other functions (e.g.
process improvement, marketing, sales, support, etc.). Note that as in many
organisations, there is no clear separation between the functions in the fig-

2 As you progress through the book, you will find references to earlier Chapters (pa-
pers at the time of publication) illustrating how the research progressed. Footnotes
may comment on the content in the light of later research and provide a forward
reference to a subsequent Chapter.

Chapter 1 Introduction

3

ure; the reason for this depiction will become clear as you read further into
the book.

Table 1-1 Cross Reference from Chapter to Conference Paper

Chapter Based on

2 Kasser J. E., “Systems Engineering: Myth or Reality”, proceedings
of the 6th Annual Symposium of the International Council
on Systems Engineering (INCOSE), Boston, MA, 1996.

3 Kasser, J. E., "There's No Place for Managers in a Quality Organi-
zation", proceedings of the Ninth Annual National Confer-
ence on Federal Quality, 1996.

Kasser, J. E., "Applying Systems Engineering to the Organization:
Announcing the Excellence Paradigm", proceedings of the
Portland International Conference on Management of En-
gineering and Technology (PICMET), 1997.

4 Kasser J. E., “Transition via Transactions: First steps in creating a
customer driven organization”, proceedings of the First
World Customer Service Congress, Tyson's Corner, VA,
1997.

5 Kasser J. E., “What Do You Mean, You Can't Tell Me How Much of
My Project Has Been Completed?” proceedings of the 7th
Annual International Symposium of the INCOSE, Los Ange-
les, CA, 1997.

Kasser J. E., “Yes Virginia, You Can Build a Defect Free System,
On Schedule and Within Budget”, proceedings of the 7th
Annual International Symposium of the INCOSE, Los Ange-
les, CA, 1997.

Kasser, J. E., “Using Organizational Engineering to Build Defect
Free Systems, On Schedule and Within Budget”, proceed-
ings of the PICMET, Portland OR, 1999.

6 Kasser J. E., Williams V.R., “What Do You Mean You Can’t Tell Me
If My Project Is in Trouble?” proceedings of the First Eu-
ropean Conference on Software Metrics (FESMA 98),
Antwerp, Belgium, 1998.

7 Kasser J.E., “The Certified Systems Engineer - It's About Time!”
proceedings of the Systems Engineering, Test and Evalua-
tion Conference 2000 (SETE 2000), Brisbane, Australia,
2000.

Chapter 1 Introduction

4

8 Kasser J.E., “A Framework for Requirements Engineering in a Dig-
ital Integrated Environment (FREDIE)”, proceedings of the
Systems SETE 2000 Conference, Brisbane, Australia, 2000.

9 Kasser J. E., “Enhancing the Role of Test and Evaluation in the
Acquisition Process to Increase the Probability of the De-
livery of Equipment that Meets the Needs of the Users”,
proceedings of the SETE 2000 Conference, Brisbane, Aus-
tralia, 2000.

10 Kasser J. E., Shoshany S., “Systems Engineers are from Mars,
Software Engineers are from Venus”, proceedings of the
13th International Conference on Software and Systems
Engineering and their Applications, Paris, France, 2000.

Kasser J. E., Shoshany S., “Bridging the Communications Gap be-
tween Systems and Software Engineering”, proceedings of
the INCOSE-UK Spring Symposium, 2001.

11 Kasser J. E., “Writing Requirements for Flexible Systems”, pro-
ceedings of the INCOSE-UK Spring Symposium, 2001.

12 Kasser J. E., Massie A., “A Framework for a Systems Engineering
Body of Knowledge”, proceedings of the 11th Annual In-
ternational Symposium of the INCOSE, Melbourne, Aus-
tralia, 2001.

13 Kasser J. E., “The Cataract Methodology for Systems and Soft-
ware Acquisition”, proceedings of the SETE 2002 Confer-
ence, Sydney, Australia, 2002.

Kasser J. E., “Configuration Management: The silver bullet for
cost and schedule control”, proceedings of the Interna-
tional Engineering Management Conference, Cambridge,
UK, 2002.

Denzler D., Kasser J. E., “Designing Budget Tolerant Systems”,
proceedings of the 5th Annual International Symposium
of the National Council on Systems Engineering (NCOSE),
St Louis, MO, 1995.

14 Kasser J. E, “The acquisition of a System of Systems is just a sim-
ple multi-phased parallel-processing paradigm”, proceed-
ings of the International Engineering Management Con-
ference (IEMC) 2002, Cambridge, UK, 2002.

Kasser J. E., “Isn’t the acquisition of a System of Systems just a
Simple Multi-phased Parallel Processing Paradigm”, pro-

Chapter 1 Introduction

5

ceedings of the INCOSE-UK Spring Symposium, Maldon,
Essex, 2002.

15 Kasser J. E., “Systems Engineering: An Alternative Management
Paradigm”, proceedings of the SETE 2002 Conference,
Sydney, Australia, 2002.

16 Kasser J. E., “Does Object-Oriented System Engineering Eliminate
the Need for Requirements?” proceedings of the 12th
Annual International Symposium of the INCOSE, Las Ve-
gas, NV, 2002.

17 Kasser J. E., “Object-Oriented Requirements Engineering and
Management”, proceedings of the SETE 2003 Conference,
Canberra, Australia, 2003.

18 Kasser J. E., Palmer K., “Reducing and Managing Complexity by
Changing the Boundaries of the System”, proceedings of
the Conference on Systems Engineering Research (CSER),
Hoboken NJ, 2005.

Kasser, J. E., “Using Organizational Engineering to Build Defect
Free Systems, On Schedule and Within Budget”, proceed-
ings of the PICMET, Portland OR, 1999.

19 Kasser J. E., “Introducing the Role of Process Architecting”, pro-
ceedings of the 15th Annual International Symposium of
the INCOSE, Rochester NY. 2005.

20 Kasser, J. E., “Eight deadly defects in systems engineering and
how to fix them”, proceedings of the 17th Annual Interna-
tional Symposium of the INCOSE, San Diego, CA, 2007.

21 Kasser, J. E., “A Proposed Framework for a Systems Engineering
Discipline”, proceedings of the CSER, Hoboken, NJ, 2007.

Kasser, J. E., “The Hitchins-Kasser-Massie Framework for Systems
Engineering”, proceedings of the 17th Annual Interna-
tional Symposium of the INCOSE, San Diego, CA., 2007.

22 Kasser, J. E., "Luz: From Light to Darkness: Lessons learned from
the solar system", proceedings of the 18th Annual Inter-
national Symposium of the INCOSE, Utrecht, Holland,
2008.

23 Kasser, J. E., Hitchins, D. and Huynh, T. V., “Reengineering Sys-
tems Engineering“, proceedings of the 3rd Annual Asia-
Pacific Conference on systems Engineering (APCOSE), Sin-
gapore, 2009.

Chapter 1 Introduction

6

24 Kasser, J. E., Hitchins, D. K., Frank, M. and Zhao, Y. Y., “A frame-
work for benchmarking competency assessment models”,
Systems Engineering: The Journal of the INCOSE Volume
16, No. 1, 2013.

25 Kasser, J. E., and Hitchins, D. K., “Unifying the different systems
engineering processes“, proceedings of CSER, Hoboken,
NJ., 2010.

26 Kasser, J. E., “Seven systems engineering myths and the corre-
sponding realities“, proceedings of the SETE 2010 confer-
ence, Adelaide, Australia, 2010.

27 Kasser, J. E., and Hitchins, D. K., "Unifying systems engineering:
Seven principles for systems engineered solution sys-
tems", proceedings of the 21st Annual International Sym-
posium of the INCOSE, Denver, 2011.

28 Kasser, J. E., "Getting the right requirements right", proceedings
of the 22nd Annual International Symposium of the
INCOSE, Rome, Italy, 2012.

29 Kasser, J. E., and Hitchins, D. K., "Yes systems engineering, you
are a discipline", proceedings of the 22nd Annual Interna-
tional Symposium of the INCOSE, Rome, Italy, 2012.

Figure 1-1 Overlapping functions in an organisation

The development, operations and maintenance of systems and software
are performed in an organisation. Represent that organisation by the func-

Chapter 1 Introduction

7

tions drawn within a boundary as shown in Figure 1-1. The functions are
grouped as project management, systems engineering, T&E sometimes also
known as Quality, and a host of other functions (e.g. process improvement,
marketing, sales, support, etc.). Note that as in many organisations, there is
no clear separation between the functions in the figure; the reason for this
depiction will become clear as you read further into the book.

Figure 1-2 Traditional black box representation

Figure 1-3 Systems are defined by their boundaries

Now the system represented in Figure 1-1 can also be represented as
the traditional black box shown in Figure 1-2. What is the difference be-
tween the two representations? The answer is they show different perspec-
tives. Figure 1-1 represents some of the internal functions of the organisa-
tion3 while Figure 1-2 explicitly shows the system as a black box with a feed-
back control element. So how many systems are represented in Figure 1-2 ?
The answer is “it depends”. What does it depend on? It depends on where

3 Figure 1-3Figure 1-1is a type of representation known as a “white box” since it
shows some of the internal functionality of the box, as opposed to a “black box”
which hides (abstracts out) the contents of the box as in Figure 1-2.

Chapter 1 Introduction

8

the boundaries are drawn. In Figure 1-1 and Figure 1-2 the boundary is im-
plicitly drawn to include both boxes. However, Figure 1-3 points out that a
boundary exists around each of the boxes. Thus Figure 1-3 can represent
two separate coupled systems or two sub-systems of a single system. These
figures demonstrate that the internal and external boundaries of a system
are determined by the viewpoint of the observer and different perspectives
can be obtained from the different viewpoints.

Each of the remaining Chapters in this book examines systems engineer-
ing from a different perspective as follows.

 Chapter 2 looks at the organisation from the perspective of the systems
engineering function.

 Chapter 3 rotates the perspective and views the organisation from the
viewpoint of process improvement.

 Chapter 4 also views the organisation from the perspective of process
improvement.

 Chapter 5 looks at the organisation from the perspective of the Soft-
ware and SDLC for large systems which can take several years to com-
plete.

 Chapter 6 looks at the context or background to the Systems Develop-
ment Lifecycle (SDLC). Anecdotal evidence suggests that most projects
do not fail due to the non-mitigation of technical risks. Rather, they fail
as a result of poor management of the human element.

 Chapter 7 looks at systems engineering from the perspective of the
people who perform it, namely the systems engineers.

 Chapter 8 views the SDLC as a production system.
 Chapter 9 views the organisation from the perspective of T&E.
 Chapter 10 views the organisation from the perspective of its culture –

the people who comprise the organisation and how they communicate.
 Chapter 11 views the SDLC from the perspective of the product being

produced.
 Chapter 12 views systems engineering from the perspective of develop-

ing a body of knowledge for teaching the subject.
 Chapter 13 views the organisation from the process perspective.
 Chapter 14 provides an alternative perspective to much of the research

effort being expended in an effort to develop new concepts that can be
used to solve the problem of managing Systems of Systems.

 Chapter 15 picks up from Chapter 2 and takes another look at the organ-
isation from the perspective of the systems engineering function.

 Chapter 16 uses the product viewpoint to examine system engineering
and object-oriented methodologies.

 Chapter 17 takes a process-product object-oriented perspective on re-
quirements engineering.

Chapter 1 Introduction

9

 Chapter 18 views the system from the perspective that systems are de-
fined by their boundaries.

 Chapter 19 examines the system from the perspective of the work done
in the development of systems.

 Chapter 20 points out eight of the defects in the current systems engi-
neering paradigm that have been identified in the research.

 Chapter 21 rounds off this phase of the research by introducing a
framework for understanding systems engineering.

 Chapter 22 looks at the relationships between requirements and func-
tions in the context of a case study.

 Chapter 23 looks at the activities performed in the early stages of the
SDLC and the types of systems engineers that should be in leadership
positions in those stages.

 Chapter 24 picks up from Chapter 11 and the types of systems engineers
identified in Chapter 23 and looks at the competencies of systems engi-
neers.

 Chapter 25 looks at the processes that are associated with systems en-
gineering.

 Chapter 26 discusses seven myths of systems engineering and shows the
nature of the myth and the reality, and explains how and why each
myth arose.

 Chapter 27 bypasses the problem of trying to gain consensus on the
nature of systems engineering by providing seven principles for systems
engineered solution systems.

 Chapter 28 takes another look at requirements and identifies that there
are two different requirements paradigms in systems engineering.

 Chapter 29 completes the story that began in Chapter 2 and shows that
systems engineering is a discipline, it is an enabling discipline used in all
domains and disciplines.

 Section 30 contains a postscript to the book.
 Section 31 contains a list of acronyms used in this book.
 Section 32 contains the collected references cited in the various papers.

Note the works citied are from a number of domains including psychol-
ogy, software, project management, innovations, Quality, systems think-
ing as well as systems engineering.

 Section 33 contains the index to help you locate words used in the book.

Chapter 2 Systems engineering: myth or reality

11

2Systems	engineering:	myth	or	reality

This Chapter looks at the organisation from the perspective of the systems
engineering function. It first unsuccessfully attempts to define systems en-
gineering then examines the overlap between systems engineering and pro-
ject management and determines that a new organisational paradigm is
needed. The research to produce this Chapter was the first phase of a jour-
ney which began formally in 1994 when I noticed at the National Council on
Systems Engineering (NCOSE) Symposium that lots of dedicated people
spent a lot of energy assessing, measuring and educating people about an
incomplete body of knowledge (systems engineering). The incompleteness
was due to the lack of a definition of what that body of knowledge is sup-
posed to cover. Now every systems engineer knows that it is important to
capture all the requirements as early as possible in the program, so why had
the systems engineers not defined (captured the requirements for) systems
engineering? This situation led me to hypothesize that there was no such
thing as systems engineering (after all, if the experts in NCOSE couldn’t come
up with one, then there wasn’t one).

This Chapter analyses the functions performed by systems engineers,
shows there seems to be no unique body of knowledge to systems engineer-
ing, which provides one reason why the NCOSE have failed to define systems
engineering. The Chapter then looks outside the systems engineering box
for the reasons for the failure, and provides a surprising conclusion.

2.1 Defining systems engineering
Hill and Warfield wrote “development of a theory of systems engineering
that will be broadly accepted is much to be desired” (Hill and Warfield, 1972).
Twenty years later systems engineers still had a problem, not only explaining
what they do to other people, but also defining it amongst themselves. For
example, at the 1994 and 1995 annual Symposia of the NCOSE, presenter
after presenter opened their presentation with a definition of systems engi-

1996

Chapter 2 Systems engineering: myth or reality

12

neering and each definition was different4. Moreover, when each presenter
continued by describing the functions performed by systems engineers, they
talked about planning, organizing, directing and measuring; which have long
been recognised as the traditional functions of management. When asked
what systems engineers did, their answers were also different, and now
some 12 years further on nothing has changed, there is still no theory of
systems engineering, not is there a definition that everyone can agree with.
According to some, systems engineering was developed in the United States
of America (US) communications industry to meet the networking challenges
of the 1950’s (Hall, 1962) and might even have begun in Germany in the
1940’s (Mackey and Mackey, 1994). So for more than 50 years, no systems
engineer has come up with a definition of systems engineering that those
systems engineers can agree upon. Thus the question is

“What is there about systems engineering that defies definition”?

In an attempt determine the nature of the problem, the proceedings
published at the NCOSE Symposia in 1994 and 1995 were scanned to deter-
mine if their subject matter could provide an answer. All authors seemed to
agree that systems engineering was performed throughout the SDLC which
spans the range of product inception, through design, development, opera-
tions and obsolescence. The number of papers on methodology and process
showed there was no “standard” process for systems engineering. While
papers in other engineering conferences tended to focus on applications
(outward), the NCOSE 1994 and 1995 papers focused inward on:

 systems engineering methodology and process (inward);
 the early phases of product inception, namely “requirements engineer-

ing”.

The insight obtained from this research was that systems engineering
seemed to be in the state electrical engineering was in before the adoption
of “Ohm’s law”5. An attempt to identify such an “Ohm’s law” in terms of
cost elements was then initiated. The approach was to consider the activi-
ties in the SDLC from the perspective of planning and doing. The activities
that pertained to planning were considered as “delays” or “lags” and the
activities involved in working as “leading”. These are the electrical ana-
logues to capacitance (lags) and inductance (leads). Assuming that working
without a plan is wasteful, and that if too much time is spent planning, there
will be insufficient resources for actually doing the work, for any phase in the

4 See Table 12-1 for a selection of other definitions in the literature.
5 Or the state of chemistry before the periodic table of elements was discovered to
show how the various elements related to each other.

Chapter 2 Systems engineering: myth or reality

13

SDLC, for a specific size of project, the optimal cost to perform the phase is
the “right mix” of planning and doing as shown in Figure 2-1. This attempt
failed since all the activities identified overlapped those of “project man-
agement”. This led to a review of project management.

Figure 2-1 Optimal Cost of SDLC Phase

2.2 Management and systems engineering
According to Kezsbom et al. project management is defined as “the planning,
organizing, directing, and controlling of company resources (i.e. money, ma-
terials, time and people) for a relatively short-term objective. It is estab-
lished to accomplish a set of specific goals and objectives by utilizing a fluid,
systems approach to management by having functional personnel (the tradi-
tional line-staff hierarchy) assigned to a specific project (the horizontal hier-
archy)” (Kezsbom, et al., 1989). Kezsbom’s systematic approach to project
management requires the breakdown and identification of each logical sub-
systems component into its own assemblage of people, things, information
or organization required to achieve the sub-objective. However, the role of
project management seems to overlap the role of systems engineering since
the role of the systems engineer is to ensure the delivery of the best working
system that can be built within the constraints of schedule, budget and re-
sources. According to Roe the knowledge and skills of systems engineering
are the same as those of project management in the areas of management
expertise, technical breadth and technical depth (Roe, 1995). Rose’ differ-
ence is in the application where the system engineer has more technical
breadth, while the project manager has more management expertise. As
such, systems engineers:

Chapter 2 Systems engineering: myth or reality

14

 Have the responsibility for the global technical design, optimal imple-
mentation and proper verification of the system over the entire SDLC
(Kasser, 1995).

 Manage subcontractors, requirements, prepare plans for systems engi-
neering and risk management (Brekka, et al., 1994).

For systems engineers to be the only functional skill which fulfils this
role, they must have a unique body of knowledge. Looking around, review-
ing experience and the literature, apart from “requirements and interface
engineering” there is no unique body of knowledge for systems engineering.
Even the ‘ilities’ are careers in themselves, and have their own literature.

Arthur D. Hall however provided the following specifications or traits for
an “Ideal Systems Engineer” in which the body of knowledge is only a small
part. His specifications are grouped in several areas as (Hall, 1962) pages 16-
18):

 An ability to see the big picture.
 Objectivity.
 Creativity.
 Human Relations.
 A Broker of Information.
 Education - graduate training in the relevant field of interest (applica-

tion), as well as courses in probability and statistics, philosophy, eco-
nomics, psychology, and language.

 Experience in research, development, systems engineering and opera-
tions.

Hall concluded by stating that the ideal is not available because the
scope of the task is beyond the capabilities of a single individual, mixed
teams of specialists and generalists are used.

2.3 Outside the box
Since looking inside systems engineering isn’t providing a definition of sys-
tems engineering, look outside systems engineering. Consider the environ-
ment in which systems engineering is performed, namely the organization.
The organization is configured in a hierarchical structure. The division of
work between manager and worker within the western corporate organiza-
tional structure is based on adaptive modifications to “Scientific Manage-
ment” (Taylor, 1911), and we have further added “Quality” as another area
of endeavour as shown in Figure 2-2. The optimal management method is
said to be “Management by Walking Around” (MBWA) (Peters and Austin,
1985). Yet Deming wrote “MBWA is hardly ever effective. The reason is that
someone in management, walking around, has little idea about what ques-
tions to ask, and usually does not pause long enough at any spot to get the

Chapter 2 Systems engineering: myth or reality

15

right answer” (Deming, 1986) page 22).
Juran was quoted by Harrington stated that 80 to 85% of all problems

are caused by management (Harrington, 1995) page 198). We spend a lot of
organizational energy mitigating the effect of poor management instead of
on productive work. For example, we create jobs which compensate for the
lack of skills in management. One such job is the ‘facilitator’ who keeps
meetings on track; a second example may be the ‘systems engineer’. This
working around ineffective managers leads to excessive complexity within
the organization6. So within our organisations, these days, Taylor’s:

Figure 2-2 Three streams of work

 Assumptions are no longer valid - Taylor’s paradigm was for an organi-
zation in which the workers did not want to work (Theory X) (McGregor,
1960). Today most system and software development organizations are
Theory Y and the workers want to get the job done.

 Rules for the division of labour are not being followed - Taylor split the
work into a partnership between brain and brawn. Taylor assumed
managers knew more about the work than did the worker. According to
Taylor, managers are supposed to plan and direct activities, while the
workers do the work. Yet today much of management in today’s sys-
tems and software development organisations has little idea of the
technical aspects of the work and consequently little idea of the tech-
nical impact of their decisions. The Dilbert cartoons, typify middle man-
agement in these types of organisations (Adams, 2006).

Other symptoms that the Taylor organizational paradigm is broken are:

6 Excessive complexity is a symptom of an underlying problem within the foundation
of the current paradigm (Chapter 3).

Chapter 2 Systems engineering: myth or reality

16

 The ineffective use of promotions since financial rewards is equated
with greater degrees of control. Since the skills required to be a tech-
nical person are different to those of a manager, we tend to promote a
good technical person into a poor manager. Once the horizontal line in
Figure 2-3 is crossed, there is no retreat within the organization, and
good technical people may be lost to the organization. This particular
path also leads to the impression that managers are more important
than the technical personnel who produce the products which bring in
the revenue.

Figure 2-3 The line of no-return

 The adoption of project management and other sub-organizations
which cross the boundaries of management, development and quality
(Integrated Process Teams (IPTs) and concurrent engineering).

 Current symbology uses boxes for a hierarchical organization structure
and circles for a process as shown in Figure 2-4. Truly a case of attempt-
ing to insert a square peg into a round hole!

 The report producing and information filtering functions of middle man-
agement have largely been replaced by technology (Rodgers, et al.,
1993).

2.4 Concurrent engineering, Total Quality Management, et
al.

Looking at industry today, Hall’s mixed teams of systems engineers (Hall,
1962) seem to be called IPTs and are working in the context of “concurrent
engineering” which has existed as a recognizable topic since the mid 1980’s.
According to Gardiner the aim of both concurrent engineering and systems
engineering is “to provide a good product at the right time ... suitably free of

Chapter 2 Systems engineering: myth or reality

17

defects and ready when the customer wants it” (Gardiner, 1996).

Figure 2-4 Symbology for organizations and processes

The International Organization of Standards (ISO) 8402:1994 definition
of Quality is “the totality of characteristics of an entity that bear on its ability
to satisfy stated and implied needs”, in other words ‘requirements’ or what
the customer really wants and the degree of conformance to same’. The ISO
definition of TQM is: “management approach to an organization, centered
on quality, based on the participation of all its members and aiming at long
term success through customer satisfaction and benefits to all members of
the organization and to society.”

Customer satisfaction is based on producing a quality product at a cost
the customer is willing to pay. So, when, in early 1996, the International
Council on Systems Engineering (INCOSE)7 finally published a definition of
systems engineering as “an interdisciplinary approach and means to enable
the realization of successful systems” INCOSE seems to have reiterated the
statement in the National Aeronautical and Space Administration’s (NASA)
manual on systems engineering, namely “TQM is the application of systems
engineering to the work environment”. This is not so surprising because
many of the tools used for TQM are the same as for systems engineering,
but with different names (NASA, 1992a) page 7). NASA also stated “Statisti-
cal process control is akin to the use of technical performance and earned
value measurements”.

7 NCOSE evolved into INCOSE.

Chapter 2 Systems engineering: myth or reality

18

2.5 The conference
A conference is itself a system by definition. Consider the process to pre-
pare and produce a conference for 800 systems engineers one year from
today (the product). This need is analysed and a set of requirements devel-
oped for the:
 Date of the conference.
 Constraints imposed by available resources.
 Number of session tracks.
 Number of sessions.
 Anything else needed.

These requirements are analysed, alternative implementations pro-
posed, decisions made based on evaluation criteria. A location is picked.
Sessions are developed, and publicity generated. As time goes by, a call for
papers is published, papers are received and evaluated, and conference reg-
istrations are received and processed. One day the conference begins and
the pace really heats up as the delegates have to be provided with the full
services of a conference in real-time. Several systems are in action and in-
teracting including the preparation and presentation of the:

 Sessions
 Proceedings
 Meals
 Accommodation

Name the activities described in this section. Is it conference manage-
ment or systems engineering?

2.6 The temporal perspective
Engineers were hard at work designing and building from the pyramids, war
machines and irrigation systems, of pre-history to the canals and railroads of
the 19th century. Those systems in their day with the technology available at
the time were just as complex as the systems we design and build today.
They generally had similar constraints of resources, budget and schedule. So
why:
 Have the concepts of TQM only been recognized as having been around

for 25-35 years?
 Has systems engineering only been recognized as a discipline since the

1950’s?

The last 50 years have also seen a transition (not yet completed) from
hardware-based systems to software-based systems. For example, the job
advertisements in the media now tend to focus on the software skills need-

Chapter 2 Systems engineering: myth or reality

19

ed by applicants for systems engineering positions. Systems engineering
may be an artefact of this transition.

2.7 Conclusions
Systems engineering is a discipline created to compensate for the lack of

strategic technical knowledge and experience by middle and project manag-
ers in organizations functioning according to Taylor’s “Principles of Scientific
Management”.

Most of today’s systems engineers really appear (work as) to be Re-
quirements and Interface Engineers. They have the responsibility to validate
the requirements since there’s little point in building a system which con-
forms to requirements if the requirements are incorrect. Perhaps those are
two missing “ilities” in the current paradigm.

Project management, Business Process Reengineering (BPR), concurrent
engineering, TQM and theoretical systems engineering all seem to be attrib-
utes of the same function; namely producing a product to (the correct) spec-
ifications by an organization within the constraints of resources, budget and
schedule. Remember MIL-STD-499A was written for systems engineering
management (MIL-STD-499A, 1974) and MIL-STD-499B changed the focus to
systems analysis and control (MIL-STD-499B, 1992). This overlap or duplica-
tion seems to be due to defects in the current organizational structure, and
in the case of systems engineering, the transition in technology from hard-
ware to software.

We need a new organizational paradigm to simplify the organization
such as the one proposed in Chapter 3 and within that paradigm, there still is
a need for someone to have a strategic perspective of the entire system.

Chapter 3 There's no place for managers in a quality organization

21

3There's	no	place	for	managers	in	a	
quality	organization

This Chapter views the organisation from the process improvement perspec-
tive. It:
 Analyses the failures of improvement initiatives identifying three major

causes of these failures, namely Quality, the structure of the organiza-
tion, and middle managers.

 Discusses the need for a new organisational paradigm.
 Introduces the “Excellence paradigm” a paradigm for an Information

Age systems and software development organization
 Presents a brief overview of the Excellence paradigm, how command

and control is achieved without middle managers, and how work is
done.

 Presents some results achieved in (and during its development), and
benefits of, the new paradigm.

3.1 Root causes of the failures
The goals of a business organization are to provide a product or service
needed by its customers and make the maximum amount of profit it can.
Businesses in looking for ways to cut costs and increase profitability have
tried various approaches such as BPR, Participative Management, IPTs, with
varying degrees of success and mostly failure (Deevy, 1995) page 4). There is
also growing evidence that TQM’s overall success rate is so low, that for
most organizations, the effort is entirely wasted (Hawley, 1995). These fail-
ures, when analysed appear to be symptoms of the following root causes:
Quality, the structure of the organization, and middle managers.

3.1.1 Quality

Deming wrote “Improvement of quality and productivity, to be successful in
any company, must be a learning process, year by year, top management

1996/7

Chapter 3 There's no place for managers in a quality organization

22

leading the whole company” (Deming, 1986) page 139). Commitment to
improvement is one of the few things that cannot be delegated. The failure
of top management to be perceived as being committed to Quality is a
prime reason for the failure of these initiatives. In addition, there are a
number of other problems with “Quality” including the following:
 The ‘Quality gap’. Quality is taught using the terminology of the

“should be” with minimal if any instruction in bridging the gap between
the “as is” and “should be” states. This is because it is easier to provide
information than it is to provide the wisdom to know what to do with
that information.

 Quality is not measurable. Crosby defines quality as “conformance to
specifications” (Crosby, 1979). Juran defines quality as “fitness for use”
(Juran, 1988) page 11). The ISO 8402:1994 definition is “the totality of
characteristics of an entity that bear on its ability to satisfy stated and
implied needs”. None of these definitions prove a useful measurement
of Quality. In an interview in 1991, Curt Reimann, director of the Mal-
colm Baldridge National Quality Award (MBNQA) said that a meaningful
definition of Quality is simply not possible (Hart and Bogan, 1992) page
4). And, without a meaningful way to measure Quality, it is difficult to
show top management how the benefits of improving quality affect the
bottom line. For example, Contractor A can build a product to specifica-
tions for $500, and Contractor B can build the identical product to exact-
ly the same specifications for $1000. Under the current definitions, the
quality of the two identical products is the same yet the production
costs are very different. No wonder Crosby wrote “Management does
not know the price of non-conformance [to quality]” (Crosby, 1992) page
5).

 Process improvement. Process improvement is generally depicted as
Plan Do Check Act (PDCA) and drawn as a circle as shown in Figure 3-18.
The use of “cycle” and “circle” imply that the organization assumes the
same state periodically which leads to activity based thinking. It may be
true that the improvement IPT performs each action periodically. How-
ever, the organization is in a constant state of improvement. Hence,
once an improvement is incorporated, the process is different. The
texts on the subject generally do not mention the need for baselines
and configuration control. Consequently, the results tend to be chaotic
in a large organization with several simultaneous improvement initia-
tives in operation. Another classic reason for the failure of process im-
provement initiatives is that the people involved are too busy working in
the process. As A. A. Milne wrote “Here is Edward Bear, coming down-

8 A better way using a spiral is discussed in Section 4.9 and shown in Figure 4-7.

Chapter 3 There's no place for managers in a quality organization

23

stairs now, bump, bump, bump, on the back of his head behind Christo-
pher Robin. It is, as far as he knows, the only way of coming downstairs,
but sometimes he feels there really is another way, if only he could stop
bumping for a moment and think of it” (Milne, 1929) page 11). An out-
side perspective with the time to do investigate and analyse is critical to
effective process improvement.

 ISO 9000. A bureaucrat’s dream; the process is sacrosanct! Follow it
and all will be well – right – wrong! An ISO 9000 compliant process is no
guarantee of Quality, only repeatable results. An organisation with a
production line producing 100% rejects can be ISO 9000 compliant for as
long as it stays in business.

Figure 3-1 The process improvement cycle

3.1.2 The structure of the organization

The systems and software development organization is configured in a hier-
archical structure. The division of work between manager and worker within
our current organizational structure was discussed in Section 2.3. Later re-
search has identified structural defects within the organization including the:
 Development of jobs which compensate for the manager’s lack of skills

(e.g. facilitators).
 Development of work which crosses the three nominally independent

activity streams (management, development and test) shown in Figure
2-2.

In addition, project management, TQM, BPR, IPTs, concurrent engineer-
ing and systems engineering seem to be attributes of the same function,
namely producing the product the customer wants.

Chapter 3 There's no place for managers in a quality organization

24

3.1.3 Middle managers

The structure of the organisation has decoupled the decision makers from
the information pertinent to the ramifications of the decision. This has pro-
duced a generation of managers typified by Scott Adams’ Dilbert cartoons
(Adams, 2006).

We create poor managers and then spend a lot of organizational energy
(money) mitigating the effect of poor management (Chapter 2). This com-
pensation for ineffective managers leads to excessive complexity within the
organization including the creation of functional jobs such as facilitators and
possibly systems engineers.

3.2 The need for a paradigm shift
Summarizing the research, the following factors point to a need for a para-
digm shift:
 Excessive complexity is a symptom of an underlying problem within the

foundation of the current paradigm.
 The many failures of the current adaptive approaches to improving our

organizations.
 The report producing and information filtering functions of middle man-

agement have largely been replaced by technology (Rodgers, et al.,
1993).

 The adoption of project management and other sub-organizations
which cross the boundaries of the three streams of work (e.g. IPTs and
concurrent engineering). Our symbology uses boxes for a hierarchical
organization structure and circles for a process as shown in Figure 2-4.
Truly a case of attempting to insert a square peg into a round hole.

 Management consulting has become a major growth industry grossing
over $7 billion each year (Deevy, 1995) page 25). Engineers are ex-
pected to know how to engineer; physicians are expected to know med-
icine, yet we don’t expect managers to know how to manage!

 Middle managers don’t seem to be adopting the recent spate of “new
management” ideas. This is not surprising since it is nigh impossible for
people to ‘unlearn’ what they know is the correct way to do something
(Kuhn, 1970). The failure of BPR could have been predicted just by look-
ing at the unfortunate choice of words on the cover of the book that in-
troduced BPR, i.e. “Forget what you know” and “most of it is wrong”
(Hammer and Champy, 1993) which violate Kuhn’s rule.

3.3 The Excellence paradigm
Management is considered as the planning, organizing, directing and con-
trolling a time ordered sequence of activities (process) performed by people

Chapter 3 There's no place for managers in a quality organization

25

building a product. (Harrington, 1995) page 1), stated “Stop worrying about
quality, productivity, cost, and cycle time. Focus your energies on organi-
zational performance improvement and all the rest will follow”. The Excel-
lence paradigm takes that advice and eliminates the root cause of organiza-
tional problems by being based on a vision of an organization performing the
functions of middle management but without managers. It is thus a real
application of the Reengineering idea (Hammer and Champy, 1993) because
while the basic approach is similar to Taylor’s approach (Taylor, 1911), it is
not based on his assumptions. The Excellence paradigm:
 Uses technology to replace many functions currently performed by

managers.
 Provides a model that may lead to a theoretical basis for understanding

why the excellent organizations reported in Peters and Waterman are
successful (Peters and Waterman, 1982).

 Moves decisions to where the action is taking place.
 Integrates a set of elements in a holistic manner. These elements out-

lined below are the:

 Structure of the organization.
 Corporate culture
 Quality-Index
 Division of Labour
 Effective task management
 Event/product based cost accounting
 Dynamic organization
 Effective use of technology
 Reward and recognition system

The Excellence paradigm, in its development phases, has:

 Reduced the cost of work on various short duration projects by a factor
of 109.

 Enabled the design and development of a network of 600 microproces-
sors controlling the LuZ SEGS-1 solar-fuelled electrical power generating
system, such that it was installed half way around the world and worked
first time with only a single hardware discrepancy report10.

 Saved NASA’s Goddard Space Flight Center $1.5 million (Kasser, 2013)
pages 383-385).

Consider each of these elements.

9 See Chapter 22.
10 See Sections 11.8.1 and 18.9.

Chapter 3 There's no place for managers in a quality organization

26

3.3.1 The structure of the organization

The Excellence paradigm is process-based (Hammer and Champy, 1993) page
28), uses a systems approach and considers an organization as a four dimen-
sional system (product, process, people and time) as shown in Figure 3-2. As
such, systems engineering methodologies are used to view, decompose and
optimise the organization.

Figure 3-2 The PPPT model

The environmental model, for example, shows the organization exists in
a marketplace comprising suppliers and buyers. In the buyer marketplace,
customers are a subset of the potential market. The cost of finding new cus-
tomers is greater than the cost of servicing existing customers, so companies
tend to focus on retaining existing customers. This is all right; however, cus-
tomers are part of the environment. They are a subset of the population as
a whole. However, companies can go out of business by:

 Concentrating on satisfying existing customers without trying to attract
new ones

 The lack of an awareness of changing technologies.

For example, carburettor manufacturers may have had an excellent
product, and satisfied customers, but fuel-injectors eliminated their market.

Existing customers also tend to recommend adaptive improvements to
products. They may not know they need innovative ones, and only recog-
nize them when they appear. For example, customers did not demand tele-
phones, electric lights, automobiles, Sony’s Walkman, fuel injectors, etc.
until they had been invented and marketed.

Consider the organization as two major systems, namely, a:

Chapter 3 There's no place for managers in a quality organization

27

 Production system which produces the product from which the organi-
zation makes its profits. Anything in this system is a direct charge.

 Support system which provides the support to the production system
(including control and feedback).

Figure 3-3 Organisational engineering in the Excellence organization

Figure 3-4 The Excellence organization paradigm

 There is no single view representation of the structure of the organisa-
tion. However, various views are discussed in this book and two views
are shown in Figure 3-3 and Figure 3-4. The term organizational engi-
neering has been introduced to emphasise that the focus is on:

 organising the people within the organisation;
 organising the processes in which the people are active;
 organising the products produced by the people;

Chapter 3 There's no place for managers in a quality organization

28

 organising the adoption of new technology as and when appropri-
ate;

 organising the information system that makes everything else pos-
sible;

 organising the organisation in which everything else exists.

This organising is performed in the manner of engineering any other
type of system. Engineers ran organisations before managers, for example
Frederick W. Taylor presented his paper on “Shop Management” to a meet-
ing of the American Society of Mechanical Engineers (George, 1972) page
92) and other early 20th century leaders of management thought such as
Harrington Emerson and Henry Gantt published in engineering journals
(George, 1972) pages 104-107).

Information and products flow between the organisational work ele-
ments which can be shown in a process flow or Program Evaluation and Re-
view Technique (PERT) chart. Decisions are made at the appropriate level to
maximize cohesion and minimize coupling between work elements. Each
bubble in the chart may consist of:

 Both process and support elements.
 Traditional organization elements - managers and workers, as not eve-

ryone wants to be, or is ready to be, empowered.
 Self-directed teams - IPTs empowered by the leadership of the organi-

zation.

The shift from traditional management to self-directed teams can take
place in a gradual manner, suitably reinforced by the organization’s RRS.
Each process circle has both process and support elements (functions). The
analogy of these teams to the computer world is:

 Hardware: printed circuits - contain signal processing (production) and
power conditioning (support) circuitry.

 Software: objects - contain programs and data.
 Systems: systems - contain production and support elements.

3.3.2 Perspectives on the process-organization

The process perspective maps into Covey’s circles of influence and circles of
concern and provides a new perspective with which to view the organization
(Covey, 1989). For example, Figure 3-5 shows a section of a buyer-supplier
chain in an industry. The view is of stages in the production process. Organ-
izational boundaries are shown as dotted lines. Organization AB performs
two stages in sequence and sells the product to the organization which per-
forms process C. Organization EZ produces two products which it sells to
organization/process W. If organisations EZ or AB are seeking to expand, a
logical merger or acquisition is with organization/process C. By acquiring C

Chapter 3 There's no place for managers in a quality organization

29

organisation AB integrates the supply chain, while by acquiring C organisa-
tion EZ establishes a monopoly in the supply chain to W. Notice that organi-
zation OX produces two products, selling to different customers and obtains
raw materials from two different suppliers. Organisation OX needs to review
its mission. By viewing the circles from the perspective of the entire process,
or the functions serving a specific customer, teaming opportunities show up.
For example, in the Government contracting arena, this view identifies op-
portunities for forming strategic alliances on a functional split for bidding in
response to requests for proposals.

Figure 3-5 The buyer-supplier perspective

In today’s paradigm, much is made of the difference between products
and services, and the intangibles involved in services that tend to prohibit
them from being measured. Yet someone or something produces the ser-
vice. Therefore at some point in the supply chain, a service is a product as
shown in Figure 3-6.

The process-based organisation must not be considered from the per-
spective of the activities performed in the process, but instead it must be
considered from the perspective of the products produced by each process
element. This perspective means that:

 The organisational process elements can be considered as “black boxes”
with well-defined inputs, outputs and transfer functions.

 The organisational entities can be well-designed minimizing coupling
between elements (Hammer and Champy, 1993) page 123).

 It is now possible to allocate authority and responsibility for the entire
process producing a product. This can correct the findings of Hammer
and Champy who state “in most companies today, no one is in charge of
the processes” (Hammer and Champy, 1993) page 28).

Chapter 3 There's no place for managers in a quality organization

30

Figure 3-6 Products and services

 Shows that “the legal entity, the company, is a reality for shareholders,
for creditors, for employees and for tax collectors. But economically it is
fiction” (Drucker, 1995) page 126). In other words it is an area of inter-
est within a boundary enclosing a section of the supply chain delivering
a product to a customer.

 Cost accounts can track the cost to produce products, rather than the
cost of doing work.

3.3.3 Corporate culture

The corporate culture is based on the three principles of Completeness
(Crosby, 1992) page 19) namely:

1. Cause employees to be successful.
2. Cause suppliers to be successful.
3. Cause customers to be successful.

This is the underlying basis for Excellence. How does the organisation
cause employees, suppliers and customers to be successful? It does that by
establishing an environment that allows effective people to do their thing
with a minimal amount of interference. In my first job as a manager I real-
ised that one of the most important things I had to do was shield the engi-
neers and technicians form the organisational bureaucratic crap and let
them get on with their work. What a waste of my time, and what a squan-
dering of resources paying the bureaucrats to produce the crap in the first
place. The Excellence organisation avoids the Peter principle (Peter and Hull,
1969) by promoting effective people, not as a reward for doing an outstand-
ing job, but on their ability to do the job into which they are promoted. As a
person moves higher in the organisation, the skills needed to do the job
change and in many organisations by being rewarded for doing an outstand-
ing job, people tend to be promoted to one level above their competence a

Chapter 3 There's no place for managers in a quality organization

31

situation which has been termed the Peter Principle. This situation is illus-
trated in Figure 2-3 showing the promotion from a technical to a managerial
position. A person should be rewarded for doing an outstanding job, but not
by a promotion. Other means exist and are effective for example, a cash
bonus is used in industry and medals are employed in the military. The or-
ganisation’s RRS should provide the means of rewarding performance. The
RRS is also associated with career planning to grow employee’s skills as well
as education and training. Education provides a promotion path, while train-
ing leads to excellence in the performance of the current task.

 Training is provided to increase skills and competences in performing
tasks. Thus training improves how a task is performed.

 Education is provided to increase insight and understanding why the
task is performed (Hammer and Champy, 1993) page 71). However, ed-
ucation must be relevant to the business (Gouillart and Kelly, 1995) page
274). Once an employee has received a postgraduate degree or other
educational qualification, they should be allowed to use their
knowledge. When I was at University of Maryland University College
(UMUC) several of my students who qualified for their Master’s degree
moved to new organisations because the employer who paid for the
education did not allow them to make use of their newly acquired skills
and knowledge. What a waste of money and talent!

The purpose of the Excellence organisation is to create wealth by provid-
ing value to its customers and making a fair profit. The organisation aims to
be the best in its field. The organisation views employees as partners with a
stake in the future of the organisation (Ford and Crowther, 1922) conse-
quently the employer as a leader in its industry should try pay above average
salaries, while the employees should make this possible by virtue of their
productivity (Ford and Crowther, 1922) page 117). To make this happen, the
culture of the organisation is that of learning. There is no such thing as a
learning organisation. An organisation can foster a learning culture and facil-
itate and reward learning, but it is the people within the organisation who
do the learning11. Learning must be continuous, since current knowledge
becomes obsolescent within a few years. However, the learning should take
place in the correct environment. Drucker wrote, “Many big companies are
currently building their own in-house education facilities. I advise caution
here. The greatest danger to the big company is the belief that there is a
right way, a wrong way, and our way. In-house training tends to emphasize
and strengthen that view. Skills, yes; teach them in house. But for purposes
of broadening the horizon, questioning established beliefs, and for organized

11 And take that knowledge away with them when they leave.

Chapter 3 There's no place for managers in a quality organization

32

abandonment, it is better to be confronted with diversity and challenge. For
these managers should be exposed to people who work for different compa-
nies and do things in different ways” (Drucker, 1993) page 350). Tertiary
education courses in Information Technology (IT), systems and software en-
gineering need to be updated each time they run to make the readings cur-
rent. Sometimes only minor updates are needed, at other times major up-
dates are required. For example, at the beginning of 2000, any course that
contained material on the Y2K problem had to be revised. Thus in light of
the current shortage of qualified personnel, courses may not get updated in
a timely manner, and consequently the education provided to the students
is less than optimal. Some universities are already solving part of the dilem-
ma by purchasing courses that they do not have the resources to produce on
their own. The World Wide Web has, for the first time, made possible a sig-
nificant change to historical paradigm of the university as a central learning
location (Kasser, 2000b). Investigate and select the correct tertiary institu-
tion for your organisation based on course content as well as flexible deliv-
ery mode.

Each element of the organization is self-regulating within the bounda-
ries set by the culture. Each element has a vision of what it is supposed to
do, the resources to do the job and the schedule. Command and control is
based on:

 Management by objectives.
 Costing products not activities.
 Ensuring products are handed over from one stage on the process to the

next, namely there is a transaction at the process interface.
 Ensuring resources are available when needed.
 Making decisions at the working level.
 Using technology to:

 Communicate formally and informally.
 Monitor progress is within planned limits, using the principles of

management by exception and statistical process control (SPC).

3.3.4 The Quality-Index

Deming wrote “Quality comes not from inspection, but from improvement of
the production process” (Deming, 1986) page 29). He also wrote “Defects
are not free. Somebody makes them, and gets paid for making them”
(Deming, 1986) page 11). The product is produced by a process within an
organizational environment. As such, the process, product and organization
represent three tightly coupled dimensions of quality and must not be con-
sidered independently (Kasser, 1995). So, to use this concept, define a Qual-
ity-Index along the lines of the MBNQA (Kasser, 1995), where the Quality-
Index of an organization is a three dimensional measure of the:

Chapter 3 There's no place for managers in a quality organization

33

 Degree of conformance of the product to its requirements, namely the
definition of Quality (Crosby, 1979).

 Effectiveness of the production process.
 Effectiveness of the organization in which the process takes place.

This use of the Quality-Index means, for example:
 The effect of poor management may be defined in terms of “cost escala-

tions” instead of using soft “Quality” based language. This means we
can now talk to top management in terms of “cost reductions” which
they understand (the customer’s language), rather than “quality” which
they generally don’t.

 Activities that lower the cost of ‘producing the product within specifica-
tions’ improve its Quality-Index. These activities take place in the area
marked as Organizational Engineering as shown in Figure 3-3.

 In the example above (Section 3.1.1), the process dimension of the
Quality-Index of Contractor A is at twice the value of Contractor B.

3.3.5 Division of labour in the Excellence organization

The division of labour is between strategic and tactical as shown in Figure
3-7 and split as:
 Strategic. The strategic planning, coordinating and “communicating the

vision” functions.
 Tactical. Production work, measuring, self-directing, tactical planning;

the activities within a process element.

Figure 3-7 Division of labour

The difference between strategic and tactical depends on how the work
is viewed. For example, an admiral-of-the-fleet performs strategic functions,
while each ship’s captain performs tactical functions. Yet, within a ship, the

Chapter 3 There's no place for managers in a quality organization

34

captain performs strategic functions and the engine room rating performs
tactical functions.

This division of work provides a true dual promotion path. Promotion
from process IPT to process improvement IPT is a strategic promotion path
for those wishing to assume more responsibility within the organization yet
remain in a technical position. Technical specialists, who can mentor junior
personnel, serve as part time members of, and advisors and consultants to,
the IPTs.

3.3.6 Effective task management and anticipatory testing

Work in the Excellence organization focuses on events, products and results
not on activities. “Prevention is planned anticipation” (Crosby, 1981). Or-
ganizational engineers use ‘communicating the vision’, management by ex-
ception, management by objectives, prevention of defects, testing, and de-
veloping and using metrics to maximize the Quality-Index to monitor and
control the work. As a result work tends to be done the right way the first
time, so the cost of the process is reduced. All tasks are visible in a Network
Scheduling Tool (NST) displayed in the manner of a process flow or PERT
chart. The description of the tasks performed in a process map directly to
the job descriptions of the people in the tasks. This eases writing job de-
scriptions and requirements for people to perform them. Any task that is
not producing something measurable is questionable. The people perform-
ing each task know their customers are in the next task bubble in the chart.

3.3.7 Event/product driven cost accounting

The Work Breakdown Structure (WBS) represents the allocation of work el-
ements and cost accounts as follows:
 Work elements to the task based on the products to be produced for

specific events or milestones by the task.
 Cost accounts to the WBS elements. In this way, the cost of:

 The work performed to comply with a task requirement is recorded
and can be used as a baseline to refine future cost estimates.

 Each specific product or event is known.

The traditional approach is to use a WBS to allocate work by listing the
activities in the hierarchical format of the WBS. This approach often allows
some work elements (processes) to be overlooked. The Event/Product driv-
en cost accounting approach recognises that a WBS is a hierarchical repre-
sentation of the work being done, namely of a process, and uses a process-
based approach to develop the activities and resources as follows. The basic
tool is the Product-Activity-Milestone (PAM) chart (Kasser, 1995) shown in
Figure 3-8. This tool has been found to be very useful in developing the rela-

Chapter 3 There's no place for managers in a quality organization

35

tionships between the product, the activities and the milestone. The PAM
chart is similar to, a cause-and-effect chart and is a tool to facilitate:

Figure 3-8 The Product-Activity-Milestone chart (Kasser, 1995)

 Defining a point in time (milestone).
 Defining the product(s) or goals to be achieved by the milestone
 Determining the activities to produce the product(s).
 Defining the resources needed to produce the product(s).

The PAM chart consists of four parts:

 The milestone - Shown as a circle.
 The product(s) produced - Drawn as a sloping line(s) leading towards

the milestone. Two products (A and B) are shown in the Figure.
 The activities - Drawn as horizontal lines leading to the product line.

They are listed above the line. Labelling reflects the activities associated
with the product, so activities A1 and A2 are associated with Product A,
and activities B1 and B2 are associated with product B.

 The resources associated with each activity - Shown as labels below the
activity lines. They are listed below the line. Labelling reflects the re-
source associated with the activities, so resources for A1 are listed be-
low A1, resources for A2 are listed below A2 etc.

The PAM Chart is implemented using paper and pencil. Starting with a
blank page, a milestone is positioned at the end of the paper. Arrows are
drawn on the product and activity lines to show the direction of progress.
Note there may be more than one milestone within the chart. This is be-

Chapter 3 There's no place for managers in a quality organization

36

cause the simple PAM chart does not explicitly show any activities and re-
sources needed to integrate the products for the milestone.

Although the labels have used letters in this example, in practice you
would use WBS style numerical listings. Thus for example, Product 3 would
have WBS elements 3.1, 3.2 etc. Once the PAM chart for the products to be
produced for a specific milestone has been developed, you use a PAM chart
to assign:

 Work elements to the task by linking them to complying with require-
ments. In this way, the cost of the work performed to comply with a
task requirement will be recorded and can be used as a baseline to re-
fine future cost estimates.

 Cost accounts to the WBS elements on the basis of the products to be
produced by the task. This approach will allow the customer to know
exactly how much a specific product produced by a task actually cost.

This approach ensures that the WBS accurately maps onto all the work
in the project providing a 100% mapping of the WBS onto the Project Break-
down Structure (PBS), namely there is never a difference between the WBS
and the PBS. The focus of the WBS is on results (products and events).
Product based costing does not only apply to products produced for sale. It
also applies to products used within the organization (indirect products) as
shown by the following example. The real cost of replacing employees in
specific positions or filling new positions tends to be unknown in many com-
panies. It can readily be determined using product based costing in the fol-
lowing manner. Consider the process of filling a position as a mini project in
which the completion milestone is the employee performance review which
generally takes place 90 days after an employee has been hired for the posi-
tion. The product is a satisfactory employee. The requirements for the
product are the skills, education, excellence and experience needed by the
candidate to perform the job. The activities to arrive at the milestone in-
clude:

 Drafting the employment advertisement.
 Placing the advertisement.
 Reading the resumes received in response to the advertisement.
 Deciding which candidates to interview.
 Interviewing the candidates.
 Making the hiring decision.
 Hiring the best candidate.
 Orienting the candidate.
 Any new employee training.
 The 90-day performance review.

Chapter 3 There's no place for managers in a quality organization

37

Charge all products and activities to the project account. If any products
or activities are shared amongst a number of job positions (i.e. employment
advertisements), then pro-rate the charges accordingly. At the end of the
time, you will know what it cost to fill the position. Once you have this in-
formation for several hiring instances, you will know:

 The cost avoidance of reducing employee turnover.
 The total cost of the hiring process. This may then be broken out to

identify which parts of the process could be improved (reduced in cost).

3.3.8 The dynamic organization

In the Excellence paradigm, process improvement:
 Is continuous. The organization is in a state of dynamic equilibrium.

Improvement of quality and productivity, to be successful in any com-
pany, must be a learning process, year by year, top management leading
the whole company (Deming, 1986).

 Is a process in itself and needs to be compliant to standards. Concep-
tually, upgrading a process is no different from upgrading a product re-
lease. Both upgrade a system and must be performed in an appropriate
manner (change requests (improvement suggestions), impact assess-
ments and configuration control). Approved changes are then carried
out at specific milestones. There is no excuse for chaos while imple-
menting changes.

 Must be performed by a separate IPT of people working interde-
pendently with the team who perform the process12. While the people
involved in the process measure the process (Peters, 1987) page 90),
process improvement requires a different set of skills to working in the
process. People working in a process are generally too busy to take the
time to improve it properly and objectively. Outsiders are more likely to
be objective and challenge the assumptions inherent in a situation.

 Is focussed on improving the organisation not on improving parts.
Focus on improving parts results in situations similar to the garden
gnome example discussed in Section 4.1. The process improvement
team (PIT) is an IPT which gets full disclosure and suggestions for im-
provement from the people performing the process, then holistically
analyses the information and suggestions from the system’s perspective
to determine the effect of the proposed improvement on all parts of the
process.

 Is cost-effective. The cost of the improvement initiative has to be less
that the cost reduction achieved.

12 See Chapter 19.

Chapter 3 There's no place for managers in a quality organization

38

 Results in reorganisations as process elements are changed. This may
be because production paths are rerouted, projects and production runs
end, or new lines are started up. The organizational engineering func-
tion must ensure that the process organisation does not suffer from
horizontal (process) stove-piping in the manner of the vertical stove-
piping of hierarchical organisations. In the process organisation the ef-
fect of reorganisations can be seen in the new process flow diagram and
the products passed across the process interfaces.

3.3.9 Effective use of technology

Today’s organizations exist in an environment that has become recognized
as being complex. The future of organizations depend on the making of in-
formed decisions at all five layers of systems engineering, from decisions at
the strategic layer in the Boardroom, to decisions that affect the production
process at the lowest layer. Making these optimal decisions requires that
correct and current pertinent information be available when the decision is
to be made. According to Farnham, the problem the executive had was to
secure at all times, live and accurate data concerning the exact conditions of
the business (Farnham, 1920) page 20). Yet, in the subsequent 85 years we
have not developed an accounting system which tells the decision makers
what their costs really are or a management information system that pro-
vides pertinent information for making an informed decision between two
alternative courses of action. Consider what such an information system
would do and what form it would take.

3.3.9.1 What the information system would do.

Beer provides a description of the conceptual information system (Beer,
1972) page 244). He wrote that bits and pieces of it existed yet in the inter-
vening years, although the technology to build such a system has become
commonplace, it still does not exist, at least in the literature. Beer discusses
the British War Room in the Battle of Britain as a close parallel, and NASA’s
control room at the Manned Space Flight Center in Houston, Texas13 as an-
other example. Information pertaining to the process flows in the organisa-
tion, the resources available and schedules would be accessible. This infor-
mation exists in digital form in most organisations; it is just not readily acces-
sible in a manner to assist the decision makers. The information system
would allow decision makers to:

13 While Beer proposed a control centre in a room, today’s technology allows for
personal desktop portals accessing information via software agents in the manner of
the FREDIE described in Chapter 8.

Chapter 3 There's no place for managers in a quality organization

39

 Make “what if” analysis of decision options would also be available,
some being provided from external sources such as Internet Search En-
gines, and Databases.

 Run simulations of the effects of alternative decisions in faster than real
time to see how the decision is sensitive to various assumptions.

 Perform safety analyses to determine how the system will react to haz-
ards.

 Access all information available to their clearance level. Today’s organi-
sations suffer and governments fall as a result of a persons in a position
of responsibility misinforming those they report to, or hiding infor-
mation and problems until it is too late to take corrective action. This
element of the information management system will minimise that ca-
pability.

3.3.9.2 The form it might take

It might be an assistant to the decision maker and a tool for the analyst. It
could be called PERCY which stands for PERsonal portal into CYberspace.
PERCY is a portal into an organisational information system architecture
which maps onto the organisation’s processes. The architecture is distribut-
ed over the organisation’s local and wide area networks using local data-
bases, not a centralised computer14. Each process element inputs data into
the system and makes use of data from the system. The information flows
between the elements of the system is arranged for control and status data
complying with an Interface Standard. This means that the system can be
assembled from current databases and implemented slowly, connecting one
element at a time using legacy databases. Access to the raw data is via soft-
ware agents in the PERCY that construct a query and determine the location
of the wanted data and send a request on the network for the data. When
the reply is received, the software agent formats the information and dis-
plays it in the appropriate manner in the PERCY. PERCY will thus operate in a
network centric or Integrated Digital Environment (IDE) that contains
 local databases on the person’s desk,
 remote legacy and yet to be developed databases on the corporate local

area network,
 external data on the World Wide Web,
 data in non-electronic formats (e.g. books, drawings, and journals).

A PERCY will have to provide timely access to this information but will
also have to process the information and provide reports in the user’s lan-
guage. This environment and functionality can be considered as complex by

14 While a distributed architecture poses some design difficulties, the central com-
puter architecture is vulnerable to many threats.

Chapter 3 There's no place for managers in a quality organization

40

all definitions of the term. It is not practical to build a complex knowledge
management system at one time rather an incremental approach will be
needed. Kemp et al. write that the knowledge management community
needs to address several essential issues immediately (Kemp, et al., 2001),
including:

 A systems approach. Typically, knowledge management programs fo-
cus on narrow solutions. A holistic approach is needed.

 An evolutionary process. There is no currently accepted process model
that supports the continued evolution of knowledge management capa-
bilities within the organisation.

The PERCY-IDE or network centric approach to dealing with the com-
plexity of this situation is not to use the traditional systems engineering de-
velopment methodology that gathers the entire set of requirements up front
before commencing the project. Instead it should be built out of legacy enti-
ties that have various formats and ways of storage. The PERCY-IDE project
allows the system to evolve within a broad architecture framework using the
Rapid Incremental Solution Construction (Kasser and Cook, 2003) ap-
proach15. The approach is reductionist, namely to first provide a solution for
a part of the problem, and then provide a solution for another part, and so
on, until the collaborative system that includes encapsulated tools, newly
designed custom software and human collaborators (Lander, 1997) is devel-
oped. There will be many data sources in the PERCY-IDE including:

 Internet Web sites (URLs)
 Databases (free and subscribed, local and remote)
 CD-ROMS (personal and available upon request)
 Libraries (personal and available upon request)
 Printed media (journals, books, notes)
 Project related information from Corporate sources
 Other Corporate data sources.
 Its own knowledge base – needed to get a base line into a problem

The PERCY is a tool that performs activity on information. However, the
types of activities performed on information in the various layers of an or-
ganization are numerous. Hence the PERCY can be expected to take various
forms including

 Corporate portals;
 Executive decision making portals;
 Domain expertise portals;

15 And the Cataract Methodology described in Chapter 13.

Chapter 3 There's no place for managers in a quality organization

41

 Others.

Technology has many uses, but must be applied in an integrated man-
ner. Thus, information in a computer in one part of the organization, or in
one software application must be accessible by others. This requires in-
teroperability and compliance to Industry Standards, not to manufacturers’
standards. Moreover, incompatibility can be present even within the prod-
uct range of one manufacturer. Two such examples in word processing were
WordPerfect 5.1, which couldn’t read WordPerfect 6 format files, and Mi-
crosoft Office 2007 files which could not be read by earlier versions of the
product until the file format converter was released. This lack of compatibil-
ity in one producer’s products requires people to upgrade just to be able to
exchange data files, even if the additional features in the upgraded software
are not needed or desired. There is also the problem of exchanging files
between programs produced by different manufacturers (e.g., Word and
WordPerfect).

Technology must be used in a seamless and almost invisible manner.
For example, information should be entered into a computer only once.
Thus data entry forms should be front ends into databases and used for data
entry and retrieval. However, technology should only be used where it is
cost effective. A flow chart template, and paper and pencil may still be more
cost effective than software in documenting processes in your situation.

3.3.10 Reward and recognition system

An organisation’s management systems – the ways in which people are paid,
the measures by which their performance is evaluated, and so forth – are
the primary shapers of employees’ values and beliefs” (Hammer and
Champy, 1993) page 75). Winning (world-class) organisations need to focus
on individual excellence and reward individuals for their achievements and
the risks that they are willing to take (Harrington, 2000). Yet performance
evaluations are discouraged (Deming, 1986) for many reasons including the
following:
 Measurements are subjective. The argument is that subjective meas-

urements demoralise people so don’t bother to make such measure-
ments. If indeed measurements are subjective, then the search should
be started for objective measurements.

 Measurements are made based on arbitrary goals. The argument is
that since the goals are arbitrary they may not be achievable or desired
by the employee. The goals should be set in a participative manner with
the employee contributing, understanding the need for, and taking
ownership, of the goals. They will then cease to be arbitrary.

 The system is at fault and people’s performance cannot improve with-
in the boundaries of the system. Deming’s “Red Bead Experiment” is
often quoted to reinforce this interpretation (Deming, 1986). However

Chapter 3 There's no place for managers in a quality organization

42

Deming’s comments about changing the system have been conveniently
forgotten. The Excellence paradigm has changed the system.

 Half the people will always be performing below average. This argu-
ment has been used as a shield for poor performance. The fallacy in the
argument is the definition of average. The systems perspective (envi-
ronmental model) is to define the average as the average for the indus-
try not the average of the individuals in the specific organization. Thus,
the idea is to position the organization as far above the industry average
of organizations as possible as shown in Figure 3-9.

Figure 3-9 Comparative position of organisations within Industry

So the problem is not the performance evaluation, it is in the way it is
implemented. According to Henry Ford “If an employer urges men to do
their best, and the men learn after a while that their best does not bring any
reward, then they naturally drop back into “getting by” (Ford and Crowther,
1922) page 117). A Reward and Recognition system (RRS) is a people-
oriented system as shown in Figure 3-10. It is bi-directional and performed
by people on people, using processes and evaluation criteria created by
people. Consequently, an understanding of people is critical to the success
of the RRS.

Many ways of categorizing people have been developed over the years.
Consider the use of the classification developed in the book Guerrilla Selling
which was chosen because the classifications are made in the way people
relate to each other (Gallagher, et al., 1992). Gallagher et al. use the context
of seller to prospective buyer and discuss the following types of personality:

 Externals - Who work based on inputs, statistics and testimonials.
These types of people need regular praise, recognition and feedback.

Chapter 3 There's no place for managers in a quality organization

43

Figure 3-10 Elements of a reward and recognition system

 Internals - Who work based on opinions, feelings and values. These
types of people let actions speak for themselves, are not interested in
recognition and awards, but work to meet their internal standards and
goals.

The organization’s RRS must reinforce behaviour that is in accordance
with the values of the organization (Harrington, 1995) page 469) for both
types of personality. People’s behaviour is explained by several theories
including McGregor who postulates two opposing types of behaviour (Theo-
ry X and Theory Y) (McGregor, 1960). From the perspective of systems
thinking, the difficulty in reconciling the two types of behaviour may be be-
cause they are not so much opposing, but they are two ends of a situational
continuum. As a result the same person can exhibit Theory X behaviour in
one situation, and Theory Y behaviour in another. My children provided a
perfect example of this continuum when they were young. They needed no
motivating for some tasks (e.g. eating ice cream), while other tasks required
an enormous amount of parental energy expenditure to get the children to
perform them (e.g. cleaning up their rooms). The aim of the RRS is to gently
move employees toward the Theory Y end of the continuum. The keys to
developing an effective performance process are (Harrington, 2000):

 Measure the right things or select the right evaluation criteria.
 The employee and manager agree to the performance standards.
 On-going measurement and feedback.
 Formal evaluations should be conducted when a milestone is achieved,

not according to an arbitrary calendar date.

The evaluation criteria you choose to achieve this purpose are critical.
Consider using some of the following:

Chapter 3 There's no place for managers in a quality organization

44

 The seven habits of highly effective people (Covey, 1989).
 Individual contributions to their project - Based on the contribution of

each member of the team to the development of the product and the
improvement of the process. Both attributes may be measured by
managers and peers.

 Team spirit - Based on how each member of the team works together
with the team and contributes to the success of the team. These attrib-
utes are measured by peers.

 Contribution to company growth and reputation - Based on volunteer
work on proposals, adopted suggestions for process improvement in ar-
eas within and outside the person’s work area; how they grow and im-
prove other people in the project; letters of commendation and awards
from customers and other sources external to the organization.

 Personal growth – Based on demonstrated willingness to learn and de-
velop (Hammer and Champy, 1993) page 189), evidenced by courses
taken, conferences attended, technical journal articles published, and
conference papers presented.

 People skills - Negotiation skills and other such skills for working with
people (Lewicki and Litterer, 1985).

Reward and recognition is an on-going process. Ways of identifying re-
wards and delivering them were discussed in “Applying TQM to Systems En-
gineering” (Kasser, 1995) pages 18-19). Evaluation of personnel takes place
at appropriate times. The evaluation criteria must be posted and known to
all employees. Never evaluate an employee against the “broader picture” or
undocumented criteria. Once a manager has evaluated an employee against
unspecified criteria, even if the employee doesn’t file a complaint, that em-
ployee will no longer trust the manager, because even if mutually agreed
goals are subsequently set, there is no guarantee that the manager will not
repeat the process at the next performance evaluation and evaluate the
employee against another set of unspecified criteria.

An evaluation is made on each of the criteria. The reason for the evalu-
ation against each criterion is documented (also important for legal and reg-
ulatory compliance reasons). The grading of the employee with respect to
the evaluation criteria must be objective and fair. Evaluation may be made
by several different people and the results for any specific criterion are a
weighted sum of all the evaluations. The evaluations for each criterion (if
performed by different people) and the normalized results may be plotted
for each employee as a bar chart as shown in Figure 3-11. Each criterion also
has upper and lower limits just like a Statistical Process Control chart. The
upper and lower limits are set so that normal behaviour is within the limits.

Chapter 3 There's no place for managers in a quality organization

45

Figure 3-11 Performance evaluation chart

If the RRS is working correctly, most evaluations should fall within the
upper and lower limits showing that the process is in control. Any situation
in which an employee receives evaluations outside the limits is to be investi-
gated by an independent organisational element to ensure the evaluation
was fair and determine the reason for the exceeding of the limit. Exceeding
the upper limit may show excellence or favouritism as well as outstanding
performance; falling below the lower limit shows something entirely differ-
ent. Each has to be investigated. Thus in the figure, the employee has ex-
ceeded the upper limit for Evaluation Criterion E7, and the reason needs to
be determined.

The evaluations also have to be checked over time to learn if there is an
abnormal pattern. For example there may be a supervisor who never gives a
certain employee a good evaluation. The mediocre evaluation may be out of
phase with other elements of the evaluation at that time or with the em-
ployee’s performance history. In today’s litigious society these checks are
becoming important to ensure that the evaluations reflect the real perfor-
mance. Today’s technology can perform “pattern checking” on evaluations
to weed out this situation. A typical performance evaluation chart for two
time periods for a different employee is shown in Figure 3-12. Note the
changes in the second evaluation showing an improvement in some of the
evaluation criteria.

In time, as the Excellence paradigm is adopted the industry average of
organizational effectiveness will tend to move up the continuum towards
maximum effectiveness. This effect is seen today in the product dimension.
For example, as noted and then predicted by Moore’s law16, the semicon-

16 Gordon E. Moore predicted that the number of transistors the industry would be
able to place on an integrated circuit wafer would double every year. He updated his
prediction to once every two years in 1975.

Chapter 3 There's no place for managers in a quality organization

46

ductor industry has quadrupled the density of random access memory inte-
grated circuits every few years.

Figure 3-12 Performance evaluation chart for two time periods

3.4 Summary
This Chapter summarized an analysis of the defects in our current organiza-
tion situation and provided a brief overview of a new cost effective para-
digm.

Chapter 4 Systems engineering the Excellence organization

47

4Systems	engineering	the	Excellence	
organization

The hardest part of making the transition to the Excellence (customer-based)
organization is the first few steps and not only need it not be chaotic it must
be orderly. Thus from the perspective of process improvement, this Chapter
describes the first few steps in the transition process, showing how to:
 Identify internal and external customers.
 Identify metrics to measure performance within the organization.
 Use transactions to ease the path to the new paradigm.
 Use transactions to minimize the resistance to change.
 View an organization as having two sets of internal customers, namely:

 Vertical - the traditional reporting path in which the customer is the
supervisor.

 Horizontal - the production process path in which the customer is
the next link in the production process. This customer may be in-
ternal or external.

 Set up evaluation criteria to measure the effectiveness of the person in
dealing with their customers.

 Set up a reward and recognition system to reinforce the new paradigm
 Identify and eliminate non-value-added transactions.

Proponents of TQM and change via reengineering tend to point at expe-
riences in other organizations which have been successful without providing
an explanation of why the successes occurred. This is akin to the apocryphal
story of the blind men examining an elephant by touch and describing the
creature. Hawley states that the BPR and TQM initiatives are about organi-
zational change (Hawley, 1995). While much is known about organizational
change, there is no current theory of organizations which permits these ap-
proaches to be implemented in our current organizations in an effective
manner. Our organizations are still generally based on adaptive modifica-
tions to the “Scientific Management” paradigm (Taylor, 1911). Think out of
the organisation box and consider mapping the organisation onto the set of

1997

Chapter 4 Systems engineering the Excellence organization

48

processes it performs or should perform. A useful list of processes is provid-
ed in the International Standard ISO 15288 (Arnold, 2002).

4.1 Mapping the organization into processes and transac-
tions

At the highest level, the organization can be represented as shown in Figure
4-1 which is identical to the drawing of the PPPT model shown in Figure 3-2.
While the control element for the particular process is within the process
element (Beer, 1972) drawing the boundaries for Figure 4-1 as discussed
with reference to Figure 1-3 it can be seen that the organisation can be rep-
resented by the following two elements or two sub-systems of a single sys-
tem:

Figure 4-1 The organization as a process (ideal)

 A process which produces the products or services the organization sells
to survive.

 A process control element (PCE) which supports the production process
by planning, organising, directing and measuring the production pro-
cess. This is the traditional management and support elements.

To analyse the organization from a transaction perspective, first decom-
pose the single process block into several blocks in series representing stag-
es in the production process as shown in Figure 4-2. Focus on what the pro-
cess does, not how it is performed (Hammer and Champy, 1993) page 130).
Focus on understanding it, not analysing it down to the smallest detail
(Hammer and Champy, 1993) page 129). However, this representation lacks
some kind of control or coordination between the process elements.

As an example of what can happen without the organizational control
element, consider an organization producing statues of garden gnomes. The
first production process element in Figure 4-2 is the moulding process. Here
the plaster is poured into the moulds and the basic statues are produced.

Chapter 4 Systems engineering the Excellence organization

49

This unit was having problems with their yield. The plaster was sticking to
the moulds and the statues were being broken as they were being removed
from the moulds. The department decided to improve the process, held
several meetings and determined they needed to coat the mould to mini-
mize the sticking. “It’s just like coating a baking pan before placing the cake
in the oven” said one of the workers. They spent several Saturdays on their
own time experimenting with coatings and determined the optimal coating.
They then instructed purchasing to procure the coating and implemented
the change. The results exceeded their expectations, the yield increased to
99.8%, sticking was a thing of the past and breakages were reduced to 0.02%
of the statues. However, at the time their yield went up, the next produc-
tion process element (the paint shop) began to have problems and their
yield went down. For some reason, the paint was smearing and taking a
much longer time to dry. When the paint shop investigated the symptoms,
they found the root cause was a coating of oil on the statues. In this situa-
tion, while the moulding department reduced their defects, they did it at the
expense of the painting department.

Figure 4-2 Multiple processes in series

There needs to be some coordination between the process elements to
avoid this situation and optimise improvements over the entire process. If
the organization is large, there may have to be several layers of this type of
additional coordination as shown in Figure 4-3. When Figure 4-3 is turned
upside down, as shown in Figure 4-4, the drawing appears as the traditional
hierarchical organization.

4.2 Identifying customers
Each box in Figure 4-4 contains a process and a control element and each
process element interfaces with other process elements by means of trans-
actions. A product is transferred. Thus, each of the lines between the boxes
in Figure 4-4 identifies a transaction of some kind. Any element sourcing a

Chapter 4 Systems engineering the Excellence organization

50

transaction is a supplier; any element receiving a transaction is a customer.
The location of suppliers and customers within and associated with your
organization can be seen by mapping Figure 4-4 onto your particular organi-
zation chart and then analysing the transactions. There are two types of
customers, namely:

Figure 4-3 Ensuring control is effective

Figure 4-4 Traditional hierarchical organization

 Vertical - the traditional reporting path in which the customer is the
supervisor (manager).

 Horizontal - the production process path in which the customer is the
next link in the production process.

Chapter 4 Systems engineering the Excellence organization

51

Each element in the organization may have either or both types of cus-
tomers. For example, the elements in the actual production process have
both vertical and horizontal customers, while the traditional middle man-
agement elements may only have vertical customers.

4.3 Identifying metrics
Little has been published on the topic of identifying the right metrics, be-
cause the right metrics make your organization more cost effective and con-
sequently provide you with a competitive edge. “The difference between
winning companies and losers is that winning companies know how to do
their work better” (Hammer and Champy, 1993) page 26). The way to identi-
fy and use appropriate metrics is a multi-step process as follows:
 Determine what constitutes a metric.
 Determine what the effect of the measurement is to accomplish.
 Identify a proposed metric.
 Use the metric to make a measurement.
 Examine the effect of using the metric. If the change is positive (head-

ing in the desired direction), then keep using it. If the change is negative
(undesired), determine if the metric is at fault, or if the measurement
approach is wrong and take appropriate corrective action.

4.4 Metrics
The ideal unit of measure (Juran, 1988) pages 76-78:
 Provides an agreed basis for decision making - Different people view

things differently, and have different priorities. The metric must allow a
meeting of minds.

 Is understandable - Metrics may not be understandable, perhaps be-
cause words do not have standardized meanings, or may require an ed-
ucational background that is lacking.

 Applies broadly - For use to determine if an improvement has occurred.
 Is susceptible to uniform interpretation - The units used and types of

errors must have been defined with appropriate precision.
 Is economical to apply - There is a trade-off between the cost of making

the measurements and the value of having them. The cost may depend
on the precision, so care must be taken to specify the correct precision.

 Is compatible with existing designs of sensors - If you can’t measure it,
there is little point in defining it as a metric.

4.5 Guidelines for identifying metrics
Guidelines for identifying metrics may be developed from the following

Chapter 4 Systems engineering the Excellence organization

52

graphical representation of the “Cost of Quality” (Kasser, 1995). A process is
performed by the implementation of a sequence of actions, by a number of
people, using available resources over a specific period of time. A process
can be shown in the form of a Gantt chart and a PERT chart as shown in Fig-
ure 4-5. There are three major milestones:
 The start point (S) where the process begins.
 The test point or check point (T) which determines the degree of con-

formance of the products which have been built, to their specifications.
 The end point (E) which occurs when the customer has accepted the

products.

Figure 4-5 The generic process

Figure 4-5 may also be viewed as a vector representation of the costs of
the process. The process contains two categories of costs, the costs of man-
ufacturing (Cm) and the costs to complete after the checkpoint (Cc). Each
category may contain fixed and variable costs depending on the specific sit-
uation. The total cost of the process (Cp) is the sum of the costs in each cat-
egory, namely Cm+Cc.

Now consider this representation as the cost of the baseline zero-defect
process. The first category of metrics is those than can be used to reduce
the cost of the baseline process without reducing the quality of the product.
The effect of using these metrics on the line shown in Figure 4-5 is to short-
en the length between Points S and E.

The typical real world process however, produces products containing
defects and can be depicted as shown in Figure 4-6 (Kasser, 1995) page 105).
When the activity begins, it proceeds in a direction away from the baseline.

Chapter 4 Systems engineering the Excellence organization

53

The checkpoint now lies at Point T1 which at the same distance from Point S
as Point T, but in a different direction. The typical cost to complete is repre-
sented as a line between Points T1 and E. This cost contains two elements,
namely:

Figure 4-6 Cost of typical process with defects

 Cost to complete after the checkpoint (Cc). These are the same as those
in Figure 4-5.

 Additional costs to complete due to not being on the baseline (Cr) which
represents the cost of not doing it right in the first place, i.e., the cost of
Quality.

The second category of metrics is those that can be used to reduce the
number of defects. The effect of developing and applying these metrics is to
push the line between Points S and T1 in Figure 4-6 down toward the base-
line.

Both categories of metrics must be used when attempting to identify
metrics for transactions. It is easier to identify items to measure in the hori-
zontal dimension or production process because when there is a physical
handover of objects, the attributes of objects can be measured. In the gar-
den gnome example, measurements can be made of the:

 Number of statues passing through the production process.
 Defective statues and other wastage of raw materials.

In the vertical dimension, the transactions tend to be control and status
information pertaining to lower levels in the organizational structure and
directives being passed down from upper management. For status transac-
tions, you can develop metrics based on the accuracy, relevance, correctness
and timeliness of the information. For control transactions you can develop

Chapter 4 Systems engineering the Excellence organization

54

metrics based on the clarity, conciseness, relevance and timeliness of the
information.

4.6 Developing the metrics
The first set of transaction metrics to develop is the defect reduction met-
rics. These act within the current state of the organization and are based on
an analysis of the individual horizontal and vertical transactions. In general
these will be incremental improvements to the process and provide quick
results.

Determining the correct metrics is critical. You tend to get what you
measure, so the perspective is important. For example, years ago when
smoking was permitted in public places two seminary students were study-
ing together in the library when one said to the other “I’m dying for a smoke,
do you think the Father will permit me to smoke?”

“I don’t know” was the reply, “why don’t you ask?”
So up got the student and went over to the Father. “Father is it permit-

ted to smoke while studying,” he asked.
“Certainly not!” said the Father.
Dejectedly the student returned to his seat and related what had hap-

pened.
“You asked the wrong question,” said his friend, “let me have try”.
So he got up, went over to the Father and asked “Father, is it permitted

to study while smoking?”
“But of course” came the response.
Later, once the metrics are in place, you can develop the baseline cost

reducing metrics based on an analysis of the value added by each process
box in the transaction path when looking at the whole path as a system. This
section of the change in general takes longer, and requires Reengineering
and other major changes. It is where the re-organization begins and the
resistance to change will be seen.

4.7 Identifying the non-value adding process element
Each process element in the organization should provide some economic
added value along the horizontal or vertical path. This means that the cost
of producing the added value (return on investment (ROI)) for the process
element must be less than the added value itself. When the organization is
mapped into a chart typified by Figure 4-4 and the inputs and outputs for
each process element are measured, the change of value along the path may
be seen. In the example, there is a change from raw materials to basic stat-
ues, to painted statues, then to statues ready for shipment, etc.in the hori-
zontal path. However, the addition of value in the vertical path may not be

Chapter 4 Systems engineering the Excellence organization

55

readily identifiable. In general, you are likely to observe pockets of ques-
tionable functions, duplicated functions and other tasks that have nothing to
do with meeting the customer’s needs (Hammer and Champy, 1993) page 4).
You must take care to find out why the apparently non-value adding process
elements are present before attempting to discard them as there may be a
valid but not readily discernible reason. One reason might be that they are
left over from some prior organisational arrangement and were not deleted
when no longer required. The product from this analytical process is a set of
facts that show exactly what each element is producing in both vertical and
horizontal paths. The costs associated with each element may be obtained
from your cost accounting system and the ROI of the element calculated.
This scenario becomes the baseline for the transition to a customer driven
transaction-based organization.

Having identified non-value adding or low ROI elements in the organiza-
tion do not downsize them without further analysis. The people in those
elements may have non-documented knowledge that is vital to the trans-
formation or even to the survival of the organization. Given appropriate
motivation, they may also swiftly become proponents of change.

4.8 Identifying the reengineering plan
Once the vertical and horizontal flows are identified a Reengineering or tran-
sition plan can be outlined. Sets of vertical and horizontal organizational
elements may be combined into a process structure and the process then
simplified. The optimal way to do this is to set up a vision of a transformed
organization (to be) alongside the current organisation (as-is) and slowly
migrate in a controlled manner as discussed below.

4.9 The change process
Change in the context of this Chapter is equated with process improvement
which is generally depicted as being implemented in a PDCA manner and
drawn as shown in Figure 3-1. The use of “cycle” and “circle” imply that the
organization assumes the same state periodically which leads to activity-
based thinking. It may be true that the PIT performs each action periodical-
ly. However, once an improvement is incorporated, the process is different.
The texts on the subject generally do not mention the need for baselines and
configuration control. Consequently, the results tend to be chaotic in a large
organization with several simultaneous improvement initiatives in operation.
Process improvement must take place in a controlled manner and the
changes in the process implemented at specific milestones. There must not
be any moving baselines. A better way to depict the process improvement
process is by means of the process improvement spiral shown in Figure 4-7.
The process improvement spiral is based on the approach that hardware

Chapter 4 Systems engineering the Excellence organization

56

engineers use to build electronic circuits, namely build a little and test (fix
any problems arising from this build), build a little more and test, and so on.
It is thus an iterative loop with baselines consisting of four steps (Kasser,
1995):

Figure 4-7 Process improvement spiral

 Plan - Define the process, analyse the process, investigate alternative
actions, and propose improvements.

 Try - Try out the proposed improvement on a small scale.
 Verify - Measure the results, and verify that an improvement took place.
 Act - Assuming an improvement took place, upgrade the process to in-

corporate the improvement (new baseline), and iterate back to “plan”
for the next go around.

The “iterative” term in the definition means that it is a continuous pro-
cess in itself. The PDCA cycle goes back to at least 1913 when Henry Ford
experimented on creating the flywheel magneto by what has now been
called the assembly line. Ford wrote “we try everything in a little way first-
we rip out everything once we discover a better way, but we have to know
absolutely that the new way is going to be better than the old before we do
anything drastic” (Ford and Crowther, 1922) page 81). This is the PDCA cycle
in the form of change request, impact assessment (plan) try it out, check the
change does what it promised to do, then act and implement the new pro-
cess.

Process improvement has to be performed by a separate team of people
working interdependently with the team who perform the process as stated
in Section 3.3. The PIT interviews the process team (who have the best
knowledge about the process but are usually under pressure to deliver the
product), and gets full disclosure and suggestions for improvement from the
process team using a soft systems intervention methodology such as
CATWOE (Checkland, 1991). The PIT analyses the information and sugges-

Chapter 4 Systems engineering the Excellence organization

57

tions from a system’s perspective to determine the effect of the proposed
improvement on all the sequential elements of the process. The process
must then be upgraded at specific milestones in a controlled manner, rather
than on an ad-hoc basis. Conceptually, upgrading a process is little different
from upgrading a product release or making an organization change. Each
action is an upgrade of a system and must be handled in an appropriate
manner (process change requests, impact assessments and configuration
control).

There are two types of improvements: - adaptive and innovative (Kirton,
1994). Adaptive improvements are more readily implemented than innova-
tive ones since they improve the current paradigm. Innovative improve-
ments tend to introduce a new paradigm, hence tend to be resisted. Adap-
tive improvements, however, also lead to the point of diminishing returns.
This is the point where an innovative change is the only way to obtain any
large degree of improvement as shown in Figure 4-8. These types of chang-
es may also be directly related to cost. Adaptive improvements reduce costs
over a time, yet the rate of reduction slowly reaches the point of diminishing
returns. Note that while innovative changes may be employed anywhere
along the curve, failure to innovate once the cost reduction curve flattens
out tends to result in an organization going out of business.

Figure 4-8 Adaptive and innovative changes

Consider the rate of improvement over time shown Figure 4-9. After
seven time periods the rate of improvement has reached 8%. Forecast what
rate can be expected in the next time period? Supposing the organisation
leadership announces an improvement target of 20% for the following year.
The initial reaction of the improvement team based on their forecast is that
the announced target is impossible, and to send a memo back asking the
leadership to stop setting arbitrary numerical targets. However, the target

Chapter 4 Systems engineering the Excellence organization

58

may not be arbitrary. It may be that a competitor is about to announce a
new product and if that numerical target is not achieved, the company will
not be competitive in that product line with all the resultant consequences.
Top management may be correct in that the new target is needed and set-
ting a numerical goal. The PIT may be correct in that it is an impossible goal
using their forecasts based on adaptive improvements, but they need to
realise that it may be possible if an innovative change is made. When nu-
merical targets are set that do not lie along the extrapolation of the histori-
cal curve of adaptive change, it is time to consider innovative change.

Figure 4-9 Improvements over time

Henry Ford wrote, “Our policy is to reduce the price, extend the opera-
tions and improve the article. You will notice that the reduction of price
comes first. We have never considered costs as fixed. Therefore we first re-
duce the price to a point where we believe more sales will result. Then we go
ahead and try to make the price. We do not bother about the costs. The
new price forces the costs down. The more usual way is to take the costs and
then determine the price, and although that method may be scientific in the
narrow sense, it is not scientific in the broad sense because what earthly use
is it to know the cost if it tells you that you cannot manufacture at a price at
which the article can be sold?” (Ford and Crowther, 1922) page 146). It is a
question of perspective and asking the right question. The usual question
was “what does it cost to produce X?” from the alternative (out-of-the-box)
perspective, the question was “how can X be produced for $Y?” This is but
one example of the situation illustrated in Section 4.6 reflecting the situation
in which we solve the problems we articulate. The key is to articulate the
correct question, or in systems engineering terms defining the correct re-
quirement.

Chapter 4 Systems engineering the Excellence organization

59

While an organisation can reengineer at any time (Hammer and
Champy, 1993), this same approach can be used to determine when an or-
ganisation has to reengineer to survive. Consider the reduction in cost over
time shown in Figure 4-10. Costs have been decreasing but the curve is flat-
tening out after seven months. Any further effort in process improvement
will not achieve significant reductions. This is the point where an innovative
change must be made, namely reengineer the process.

Figure 4-10 The reengineering point

There is no point in starting to change an organization unless you have a
vision of what the changed organization will look like along the road to
change as well as in its final form as shown in Figure 4-11. This picture does
not need to be complete and 100% detailed, in fact it shouldn’t be that de-
tailed. This is because you will learn things during the process of change that
will modify the vision because you will learn more about what is happening
both within and without the organization. Don’t forget, that while you are
changing the organization, the outside world is also changing as shown in
Figure 4-12. You can thus change the details of the vision at well-defined
milestones along the road of change. In fact, you should plan to change the
vision at these milestones. If you put together a plan for transitioning to
meet today’s needs, and it’s going to take three years to make the change,
at the end of the change, the organization will be three years out of date.
The approach is to set up the change so that it gradually converges to the
point where it’s needed as shown in Figure 4-13 an approach also known as
evolutionary acquisition.

Chapter 4 Systems engineering the Excellence organization

60

Figure 4-11 The Road to Change

Figure 4-12 Chasing a moving target

The techniques used are based on the same budget tolerant approach
to designing a major computerized system in the aerospace and defence
industries (Denzler and Kasser, 1995)17. They are to:

 Prioritise the changes and then implement the changes in order based
on the highest priorities.

17 And discussed in Chapter 13

Chapter 4 Systems engineering the Excellence organization

61

 Re-evaluate the priorities at the milestones and make the corresponding
changes to the next set of activities.

Figure 4-13 Convergence

While no two companies’ business situations are identical (Hammer and
Champy, 1993) page 159), there are methodologies that can be employed to
perform the paradigm shift in an effective manner. The change does not
have to be chaotic. Do not radically change everything in the organization at
the same time. The change must be gradual and made with care. Start
with a vision of the desired result and work backwards along the transition
path via identifiable milestones to the present. For example, the sequence
for implementing a transition from the current paradigm to the ‘customer-
driven process organization’ paradigm is as follows:

1. Communicate the need to change.
2. Identify the current processes performed by the organization and

determine the value chain.
3. Baseline the current state of the organization.
4. Create the draft vision statement of the new transaction-based or-

ganisation.
5. Create the transition plan.
6. Design the RRS.
7. Pilot one process transition to the new paradigm.
8. Implement the RRS.
9. Baseline the change.
10. Evaluate the experience
11. Update the transition plan
12. Start the transition cycle for the next process.

Chapter 4 Systems engineering the Excellence organization

62

4.10 Support and resistance to change
Even where top management may be perceived as having the commitment
to change, and can “communicate the vision,” and the people at the lower
levels in the knowledge organization are willing to try it, in many instances,
middle management resist the change and the change fails. For example, in
a survey of 1000 companies by Achieve International, more than 33% of the
companies reported sabotage or internal resistance to these initiatives
(Brecka, 1994). Most blamed middle managers for impeding quality (75%)
and team efforts (70%). This resistance is because there seems to be noth-
ing in it (the new system) for them. Thus Figure 4-14 charts resistance to
change as a function of management level in the knowledge organization. In
general:

Figure 4-14 Resistance to change by management level

 Top management understand the need for change and desire the
change.

 At the lowest level - the workers want the change and are frustrated by
not being provided with the tools to implement the change.

 Middle management tends to resist the change and protect their own
fiefdoms even though their actions are detrimental to the organisation
as a whole.

You will encounter three types of people in the organization when im-
plementing the change. They are those:

 For the change - who will make it happen if given the chance, whatever
it takes. They tend to be the people involved with the process who can
see the defects and want to initiate improvements. Implement the first
change with these people. They will make it work. If you reward them
visibly, you will set up the next batch of people to implement the next
change.

Chapter 4 Systems engineering the Excellence organization

63

 Who are undecided - they are sitting on the fence waiting to see which
way the wind is blowing. The goal is to move them to your side of the
fence so they support you.

 Against the change - they have no motivation to effect the change. The
goal is to make them amenable to the change by first moving them to
the undecided camp.

Think of the normal distribution curve in Figure 4-14 as showing a fence.
Most people are sitting on the fence; your job is to encourage them to slide
down the fence on your (the improved) side. If there is a real hard core of
resistance, don’t confront it early in the change process; bypass it for as long
as you can, it may fade away on its own. The transaction analysis approach
should tend to overcome the resistance at least for those personnel in non-
value adding elements.

Telling people who had played a substantial role in creating an organisa-
tion that it is broken and needs major surgery is a sure way to invoke re-
sistance to change. Approaches that ought to mitigate such resistance in-
clude:

 Employing an outsider who is not competing for promotion with em-
ployees as the process architect18.

 Using variations of the phrase “the current organisation met the needs
of the time; however a small modification is now necessary to meet the
new situation” which does not assign blame it just notes that system
that is no longer appropriate for the current situation.

4.11 Implement the reward and recognition system
The failure to institute an appropriate RRS is a major cause of most of the
failures in BPR and TQM. The organization’s whole RRS must reinforce the
behaviour appropriate to the transition to the new organization (Harrington,
1995) page 469. This means that:
 The organisation needs a RRS as Drucker wrote “People in organisations,

we have known for a century, tend to act in response for being recog-
nised and rewarded-everything else is preaching. The moment people in
an organization are recognized-for instance by being asked to present to
their peers what made them successful in obtaining the desired results-
they will act to get the recognition. The moment they realize that the
organization rewards for the right behaviour they will accept it”
(Drucker, 1993) page 195).

18 See Chapter 19.

Chapter 4 Systems engineering the Excellence organization

64

 The RRS evaluation criteria must reinforce behaviour that is in accord-
ance with the values of the organization (Deming, 1993) namely, reflect
the values of the Excellence organisation.

4.12 Summary
Making the transition to the Excellence (customer-based) organization is a
difficult process generally characterized by resistance to change, chaos and
inefficiency. However there is a better way and the transaction approach
can be used to identify the non-value adding elements in the organization.
Once they are identified, the process can be reengineered and implemented
in a controlled manner. At this time, the process of reengineering into the
new paradigm may receive lesser resistance than in conventional approach-
es, because it becomes in everybody’s interest to be part of a value adding
process element. The change must be reinforced with a change in the or-
ganization’s RRS to reward behaviour appropriate to the new paradigm.

Your journey begins with the first few steps, and those steps are to iden-
tify and improve all the transactions within your organization.

Chapter 5 Measuring project completion

65

5What	do	you	mean	you	can't	tell	me	
how	much	of	my	project	has	been	
completed?

This Chapter looks at the organisation from the perspective of the SDLC for
large systems which can take several years to complete. During this time,
the:
 Customer makes periodic progress payments to the supplier. In this

situation, since the acceptance tests are generally made at the end of
the SDLC, the suitability of the product for its mission is unknown for the
time in which the bulk of the payments are made.

 Supplier provides the customer with minimal information to demon-
strate the risk of non-compliance with the Statement of Work (SOW).
The information is typically provided in the form of:

 Management - i.e., budget (estimated and actual), Gantt and PERT
Charts, conformance to “best practices”

 Intermediate products - i.e., documents, lines of code produced,
defects found, number of requirements satisfied.

 Process - i.e., degree of compliance to the appropriate Capability
Maturity Model (CMM) and ISO models.

The intermediate reports are produced to reduce the risk of non-
delivery and non-compliance to the requirements in the SOW. Now in spite
of the measurements being made the supplier is unable to tell the buyer the
exact percentage of completeness of the system under construction anytime
during the SDLC.

5.1 Requirements
A definition of a successfully completed system is one that meets its re-
quirements. However, measuring the percentage of completed require-
ments does not provide a measurement of completeness of the system for
several reasons, including:

1997

Chapter 5 Measuring project completion

66

 Nature of the requirements - different requirements have different
complexities, resulting in different implementation times and costs.

 Changes in requirements over the SDLC - the customer either does not
state the full requirements for a system in the Request for Proposal
(RFP), or changes them for various reasons during the SDLC.

The ideal SDLC is shown in Figure 5-1. A set of requirements for the sys-
tem is developed based on the real need. The implementation phase of the
SDLC is then supposed to take place across several milestones until the sys-
tem is completed. Note that Figure 5-1 is identical to Figure 4-11, differing
only by the words “organisation” and “system”. This is because both figures
represent changing needs over time.

Figure 5-1 Ideal SDLC

The real world SDLC shown in Figure 5-2 is one in which the vision of the
product (real need) changes during the implementation phase. Consequent-
ly, the requirements change. Thus, while the delivered system may meet its
original requirements, if no change is made, the system will not meet the
requirements in effect at the time of delivery. This situation leads to chang-
es in requirements during the implementation phase, which in general are
poorly controlled. And, the major consequences of failing to control changes
are moving baselines and confusion leading to cost escalation and schedule
delays (Kasser and Schermerhorn, 1994b). Again Figure 5-2 is identical to
Figure 4-12. The situation is the same; the difference lies in the definition of
the system being produced. In this instance it is a system being acquired, in
Chapter 3 it was a new organisation being developed. Thus the process im-
provement methodology is the same as the methodology to develop any
other product. The difference lies in the process that implements the meth-
odology.

Chapter 5 Measuring project completion

67

Figure 5-2 Actual SDLC

Recognizing that this situation was inevitable, the cataract approach (a
series on mini waterfalls) shown in Figure 5-3 was proposed to control
change (Kasser, 1995). The approach is best implemented using a budget-
tolerant SDLC methodology based on the traditional waterfall SDLC model
(Royce, 1970), but with significant enhancements19.

Figure 5-3 The anticipatory testing SDLC

Note the similarity of Figure 4-11, Figure 4-12 and Figure 4-13 to Figure
5-1, Figure 5-2 and Figure 5-3. This is because both products and organisa-
tions are systems whose requirements change while they are being devel-
oped, and the development process has to converge from meeting the re-

19 See Chapter 13.

Chapter 5 Measuring project completion

68

quirements at the time the process began to meeting the requirements at
the time the process ends (delivery). Thus from this perspective, evolution-
ary acquisition is nothing new, it is the way we have always acquired sys-
tems. However, we have been using a flawed acquisition paradigm based on
the assumptions that all the requirements must be known at the start of the
acquisition process irrespective of how many years that process will take.

5.2 Categorized Requirements in Process
The budget tolerant methodology categorized requirements by cost (to im-
plement) and priority. Tracking the implementation of the categorized re-
quirements has led to a measurement approach that has the potential of
providing a measurement of completeness of the product at any of the mile-
stones in the SDLC. This measurement approach, called Categorized Re-
quirements in Process (CRIP) (Kasser, 1999) is a way to estimate the per-
centage of project completion by looking at the change in the state of the
requirements over time from several perspectives. CRIP charts use a tech-
nique similar to Feature Driven Development (FDD) (Palmer and Felsing,
2002) to monitor the state of a feature or requirement during the SDLC. FDD
Charts however, show the state of every requirement or feature, namely
they are suitable for detailed discussion by developers and testers, but pro-
vide information overload for managers and do not cover the entire SDLC.
CRIP Charts on the other hand cover the entire SDLC and provide summaries
suitable for management but have to be integrated into the process. The
four-step CRIP approach is:

1. Categorize the requirements.
2. Quantify each category into ranges.
3. Place each requirement into a range.
4. Monitor the differences in the state of each of the requirements at

the SDLC reporting milestones

The first part of the approach avoids the problem of comparing re-
quirements of different complexities. The last step is the key element in the
CRIP approach. Consider the four steps.

5.2.1 Categorize the requirements

Categories are identified for the requirements. Typical categories are:
 Priority of the requirement to the customer.
 Complexity of the requirement, i.e. the difficulty of implementing the

requirement.
 Estimated cost to implement the requirement by the supplier.
 Risk - probability of occurrence, severity if it occurs, etc.

Chapter 5 Measuring project completion

69

5.2.2 Quantify each category into ranges

Each category is then split into no more than ten ranges. Thus, for:
 Priority - requirements may be allocated priorities between one and

ten.
 Complexity - requirements may be allocated estimated complexities

between “A” and “J”.
 Estimated cost to implement - requirements may be allocated estimat-

ed costs to implement values between “A” and “J”.
 Risk – requirements may be awarded a value between one and five.

The ranges are relative, not absolute. Any of the several techniques for
sorting numbers of requirements into relative ranges may be used. The
buyer and supplier determine the range limits in each category. A require-
ment may be moved into a different range as more is learned about its ef-
fect on the development during the implementation phase. Thus, the priori-
ty of a specific requirement or the cost to implement may change between
SDLC reporting milestones. However, the rules for setting the range limits
must not change during the SDLC.

5.2.3 Place each requirement into a range

Each requirement is then placed into one range slot for each category. If all
the requirements end up in the same range slot, such as all of them having
the highest priority, the range limits should be re-examined to spread the
requirements across the full set of range slots.

5.2.4 States of implementation

Each requirement can be in one of five states at any time during the SDLC.
These states of implementation of each requirement during the project are:
 Identified - A requirement has been identified, documented and ap-

proved.
 Working - The supplier has begun work to implement the requirement.
 Completed - The supplier has completed work on the requirement.
 In test - The supplier has started to test the requirement.
 Accepted - The buyer has accepted delivery of part of the system (a

Build) containing the implementation of the requirement.

The summaries of the number of requirements in each state are report-
ed at project milestones.

5.2.5 Populating and using the CRIP Chart

Each cell contains three numbers, expected, actual and planned for next
reporting period where:

Chapter 5 Measuring project completion

70

 Expected - The number of requirements planned to be in the implemen-
tation state, based on the previous reporting milestone.

 Actual - The number of requirements in the implementation state.
 Planned for next reporting period - The number of requirements

planned to be in the implementation state in the following reporting
milestone.

For the first milestone reporting period, the values for “expected” are
derived from the project plan for the time period. The “actual” value is the
number measured during the reporting period, and the “planned for next
reporting period” is a number derived from the project plan and the work
done during the current reporting period. From then on the planned num-
bers are based on the state of the project. Numbers move horizontally
across the CRIP Chart over time as shown in Figure 5-4. As work progresses
the numbers flow across the columns from “identified” to “accepted”.

Figure 5-4 CRIP chart entry changes over time

At each reporting milestone, the changes in the state of each of the re-
quirements between the SDLC reporting milestones are monitored. The
states of each of the requirements in each of the categories are presented in
tabular format (a CRIP Chart) at reporting milestones (major reviews or
monthly progress meetings) as can be seen in the typical CRIP Chart shown
in Figure 5-5. Colours can be used to draw attention to the state of a cell in
the table. For example the colours can be allocated such that:

 Violet – shows requirements implementation is well ahead of estimate.
 Blue – shows requirements implementation is ahead of estimate.
 Green – shows requirements implementation is close to estimated val-

ues.

Chapter 5 Measuring project completion

71

Figure 5-5 CRIP chart for category X

 Yellow – shows requirements implementation is slightly below estimate.
 Red – shows requirements implementation is well under the estimated

value.

One chart can show that a problem might exist. Any time there is a de-
viation from expected to actual, the situation needs to be investigated. A
comparison of the summaries from different reporting milestones can identi-
fy progress and show that problems may exist. On its own however, it can-
not identify the actual problem. For example in Figure 5-5:

 The cell in the “Identified” column for Range 6 shows that the project
planned that five requirements would be identified, but eleven re-
quirements were actually identified and the project expects to identify
none in the next reporting phase. Something may be wrong here!

 In Range 3, it was expected that the part of the system implementing
two requirements would go into test in the last reporting period, yet
four made it into test and one is planned for the next reporting period.
Testing seems to be ahead of schedule.

The CRIP charts when viewed over several reporting periods can identify
other types of “situations”. The CRIP chart may be used on a standalone
basis or in accordance with budget and schedule information. For example,
if there is a change in the number of:

Chapter 5 Measuring project completion

72

 Identified requirements and there is no change in the budget or
schedule, there is going to be a problem. Thus, if the number of re-
quirements goes up and the budget does not, the risk of failure increas-
es because more work will have to be done without a change in the al-
location of funds. If the number of requirements goes down, and the
budget does not, there is a financial problem.

 Requirements being worked on, and there is no change in the number
being tested, there is a potential supplier management or technical
problem if this situation is at a major milestone review.

 Requirements being tested, and there is no change in the number ac-
cepted, there may be a problem with the supplier’s process.

 Identified requirements at each reporting milestone, the project is suf-
fering from requirements creep if the number is increasing. This situa-
tion may reflect controlled changes due to the change in the customer’s
need, or uncontrolled changes.

5.2.6 Advantages of the CRIP Approach

The advantages of the CRIP approach include:
 Links all work done on a project to the customer’s requirements.
 May be used at any level of system decomposition.
 Provides a simple way to show progress or the lack of it, at any reporting

milestone. Just compare the expected and actual numbers and ask for
an explanation of the variances.

 Provides a window into the project for top management (buyer and
supplier) to monitor progress.

 Identifies the probability of some management and technical problems
as they occur, allowing proactive risk containment techniques.

 May be built into requirements management, and other computerized
project and design management tools.

 May be built into Government contracts via the SOW. Falsifying entries
in the CRIP Chart to show false progress then constitutes fraud.

 Requires a process. Some organisations don’t have one, so they will
have to develop one to use CRIP Charts.

 Requires configuration management which tends to be poorly imple-
mented in many organisations. The use of CRIP Charts will force good
configuration management.

5.2.7 Disadvantages of the CRIP Approach

The CRIP approach has the following disadvantages, it:
 Is a different way of viewing project progress.
 Requires categorization of the requirements.

Chapter 5 Measuring project completion

73

5.2.8 Perspectives on CRIP Charts

Consider the CRIP charts from the following perspectives:
 Contractor past performance.
 Identifying the critical chain.5.2.8.1 Contractor Past Performance
The CRIP chart numbers at major milestones can provide objective past-
performance evaluation criteria and force cost effective behaviour. Consider
the following examples.
 Requirements are met or they are not. Waived requirements are “not

accepted requirements” by definition. Hence the process of “waiving
requirements that a supplier cannot meet at the end of a project” shows
up in the CRIP Chart when the planned number of accepted require-
ments at the pre-completion milestone is different from the number of
requirements accepted at the completion milestone.

 Requirements Creep. Requirements creep shows up on the CRIP Chart
in the number of identified requirements at major milestones. If re-
quirements creep is a negative evaluation criterion in a short duration
cost plus contract, then it is in the supplier’s interest to identify a full set
of requirements as early in the program as possible. The supplier is now
motivated to get it right the first time.

 Degree of completion. It may be possible to develop a CRIP rating
based on the difference between the number of system requirements
identified over the SDLC, and the number accepted at the completion of
the project and the total cost of the project as a function of the number
of categories and ranges within each category. However, this rating will
require a “CRIP standard” for future contracts.

 Problems with the buyer’s project team. If the CRIP Charts show that
all the buyer’s requirements are met, yet the subjective past perfor-
mance rating is poor, there may be a problem with the buyer’s project
team. This is something the customer should investigate.

 Time will tell. If requirements can only be tested over time, such as
mission effectiveness requirements and failures, the buyer can update
the final CRIP Chart in the past performance database (if they are in-
cluded) to reflect the status of the requirements after several months of
use.5.2.8.2 Identifying the Critical Chain

If CRIP Charts are used to monitor the flow of work in a process, bottlenecks
should show up where the process flow is constrained. These identify the
critical chain according to the Theory of Constraints (Goldratt, 1990).

Chapter 5 Measuring project completion

74

5.3 Conclusions
The CRIP Chart approach to measuring progress can provide a more accurate
answer to the buyer’s question than any other measurement approach in
use today. It provides a high degree of visibility of the status of a project in
both the buyer and supplier organizations that should discourage poor man-
agement in both organizations. However, it still does not guarantee the
completeness of the system level requirements.

Chapter 6 Measuring project status

75

6What	do	you	mean	you	can’t	tell	me	
if	my	project	is	in	trouble?

This Chapter looks at the context or background to the SDLC. Anecdotal evi-
dence suggests that most projects do not fail due to the non-mitigation of
technical risks. Rather, they fail as a result of poor management of the hu-
man element (Harrington, 1995; Deming, 1986). In addition, while the
Standish Group identified ten major causes for project failure along with
their solutions, they also stated that it was unclear if those solutions could
be implemented (VOYAGES, 1996). This Chapter describes the development
of a set of risk-indicators based on the human element. These risk-indicators
can then be further refined into metrics to predict project failures.

The SDLC for large systems can take several years to complete. During
this time, the:

 Customer makes periodic progress payments to the supplier. In this
situation, since the acceptance tests are only made at the end of the
SDLC, the suitability of the product for its mission is unknown for the
time in which the bulk of the payments are made.

 Supplier (contractor) provides the customer with information to reas-
sure the customer that the requirements in the SOW are being imple-
mented. The information is provided in the form of:

 Management information - i.e., budget (estimated and actual),
Gantt and PERT Charts, conformance to “best practices.”

 Intermediate products - i.e., documents, lines of code produced,
defects found, number of requirements satisfied.

 Process - i.e., degree of compliance to the CMM and ISO models.

The reports containing this intermediate information are produced to
demonstrate a low risk of non-delivery and non-compliance to the require-
ments. Drucker wrote that “throughout management science, in the litera-
ture as well as in the work in progress, the emphasis is on techniques rather
than on principles, on mechanics rather than on decisions, on tools rather
than on results, and, above all, on the efficiency of the part rather than on

1998

Chapter 6 Measuring project status

76

the performance of the whole” (Drucker, 1973) page 509). Nothing seems to
have changed in 30 years. While the SDLC has evolved from the waterfall
method through various iterative approaches (e.g., Incremental, and Rapid
Prototyping), the focus of measurements being made in today’s paradigm
are still in the process and product dimensions of the activities (Chapter 5)
namely:

 The process dimension - Measurements are made of compliance to
standards such as ISO 9001 and the CMM.

 The product dimension - Measurements (e.g., defects, lines of code per
day, etc.) provide post-facto information, namely they report on what
has happened and cause management to react to the reports.

These measurements provide post facto information, namely they re-
port on what has already happened. This causes management to be reactive
instead of being proactive. In addition, in spite of all the measurements be-
ing made, the supplier is often unable to tell the customer:

 The exact percentage of completeness of the system under construction
anytime during the SDLC.

 The probability of successful completion within budget and according to
schedule.

Thus, there is little wonder that software projects tend to fail (exceeds
original estimates for cost and schedule, or terminate prematurely). How-
ever, the growing international dependency on the ISO standards for the
SDLC indicates that this phenomenon of software project failure is not lim-
ited to the United States (US).

6.1 A methodology for developing metrics for predicting
risks of project failures

The methodology for developing metrics for predicting risks of project fail-
ures has its origins in a class on Software IV&V in the Graduate School of
Management and Technology at UMUC20 in 1997 and 1998. Students in
those classes wrote and presented term papers describing their experiences
in projects that were in trouble. The term papers adhered to the following
instructions:

1. Document a Case Study based on personal experience.
2. Analyse the scenario.

20 These students were employed in the workforce and were working towards their
degree in the evening. Their employment positions range from programmers to pro-
ject managers. Some also had up to 20 years of experience in their respective fields.

Chapter 6 Measuring project status

77

3. Document the reasons the project succeeded or ran into trouble.
4. List and comment on the lessons learned from the analysis.
5. Identify a better way with 20/20 hindsight.
6. List a number of situational indicators that could be used to identify

a project in trouble or a successful project while the project is in
progress.

Once the papers had been graded, the methodology for developing
metrics for predicting risks of project failures:

 Summarized the student papers to identify common elements called
“risk-indicators”.

 Surveyed systems and software development personnel via the Internet
to determine if they agreed or disagreed with the risk-indicators.

 Summarized, analysed and validated the results.

6.2 Summary of student papers
Nineteen students produced papers that identified a total of 34 different
risk-indicators. Each risk-indicator identified was a risk or a symptom of a
risk that could lead to project failure. While several risk-indicators showed
up in more than one student paper “poor requirements” showed up in all of
the papers.

6.3 The survey
A survey questionnaire was constructed based on the student provided risk-
indicators21 and sent to systems and software development personnel via
the Internet. Given there were 34 risk-indicators and expecting that recipi-
ents of the survey would not take the time to perform an Analytical Hierar-
chical Process (AHP) (Saaty, 1980) pair wise determination to identify the
risk-indicators that were most and least important, an alternative prioritisa-
tion process was developed as described below. The survey questionnaire
just asked respondents to:

1. State if they agreed or disagreed that the student provided indica-
tors were causes of project failure22.

21 The students tended to state ‘problems’ using the semantics of ‘solutions’ or
‘symptoms’ rather than ‘cause’.
22 The authors of the survey recognized that there are other causes of (risks) project
failure and added an “other” category to the survey questionnaire for “write-in”
risks.

Chapter 6 Measuring project status

78

2. Pick out and prioritize the top seven risk indicators as causes of pro-
ject failures.

3. List the seven risk-indicators that they thought were the least caus-
es of project failures.

One hundred and forty-eight responses were received. The raw findings
are summarized in Table 6-1. The first column contains a number identifying
the risk-indicator described in the second column. The third column lists the
number of students that identified the risk-indicator. The fourth column
contains the percentage of agreement by the survey respondents. The fifth
column contains the percentage of disagreement. The sixth column is the
ranking of the risk-indicator. Thus for example, poor requirements ranked
the highest as a cause of project failures with 97% agreement and 3% disa-
greement.

Table 6-1 Initial findings

Risk Risk-Indicators Students Agree Disagree Rank

1 Poor requirements 19 97 3 1

2 Failure to use experienced people 7 79 21 13

3 Failure to use Independent Verification
and Validation (IV&V)23.

6 38 62 31

4 Lack of process and standards 5 84 16 11

5 Lack of, or, poor plans 4 95 5 2

6 Failure to validate original specification
and requirements

3 91 9 3

7 Lack of Configuration Management 3 66 34 19

8 Low morale 2 51 49 24

9 Management does not understand SDLC 2 59 41 22

10 Management that does not understand
technical issues

2 56 44 23

11 No single person accounta-
ble/responsible for project

2 69 31 18

23 The papers were written by a class on IV&V, hence the emphasis on IV&V. Howev-
er, if the descriptions of tasks that IV&V should have performed (in the papers) are
examined, the word “IV&V” could easily be replaced with the word “systems engi-
neering” and the papers would be equally valid.

Chapter 6 Measuring project status

79

Risk Risk-Indicators Students Agree Disagree Rank

12 Client and development staff fail to at-
tend scheduled meetings

1 42 58 28

13 Coding from high level requirements
without design

1 75 25 14

14 Documentation is not produced 1 63 38 21

15 Failure to collect performance & process
metrics and report them to manage-
ment

1 48 52 25

16 Failure to communicate with the cus-
tomer

1 88 12 5

17 Failure to consider existing relationships
when replacing systems

1 85 15 10

18 Failure to reuse code 1 27 73 34

19 Failure to stress test the software 1 75 25 15

20 Failure to use problem language 1 34 66 30

21 High staff turnover 1 71 29 16

22 Key activities are discontinued 1 74 26 17

23 Lack of Requirements Traceability Ma-
trix

1 67 33 19

24 Lack of clearly defined organizational
(responsibility and accountability) struc-
ture

1 82 18 11

25 Lack of management support 1 87 13 6

26 Lack of priorities 1 85 15 8

27 Lack of understanding that demo soft-
ware is only good for demos

1 47 53 26

28 Management expects a CASE Tool to be
a silver bullet

1 45 55 27

29 Political considerations outweigh tech-
nical factors

1 86 14 9

30 Resources are not allocated well 1 92 8 4

31 The Quality Assurance Team is not re-
sponsible for the quality of the software

1 40 60 29

32 There are too many people working on
the project

1 36 64 32

Chapter 6 Measuring project status

80

Risk Risk-Indicators Students Agree Disagree Rank

33 Unrealistic deadlines hence schedule
slips

1 86 14 7

34 Hostility between developer and IV&V 1 33 67 33

6.4 Survey results
The survey results were surprising. Modern TQM theory holds that the
Quality Assurance Department is not responsible for the quality of the soft-
ware. Everybody shares that responsibility. Thus, while it was expected that
most respondents would disagree with this risk-indicator, only 60% of the
respondents disagreed. It was also anticipated that most respondents would
agree with the other risk-indicators, yet the overall degree of agreement
was:

0.7% (one respondent) agreed with all 34 risk-indicators.
8.1% agreed with at least 30 risk-indicators.
51% agreed with at least 20 risk-indicators.
93% agreed with at least 10 risk-indicators.
As for the degree of disagreement:
0.7% (one respondent) disagreed with 25 risk-indicators.
4.7% disagreed with at least 20 risk-indicators.
52% disagreed with at least 10 risk-indicators.
88% disagreed with at least one risk-indicator.

6.5 Further analysis
The basic assumption is that while there were 34 risk-indicators, the major
effect on a project will be due to a few of them, so we are only concerned
with identifying the most and least important Given there were 34 risk-
indicators and expecting that recipients of the survey would not take the
time to perform an Analytical Hierarchical pair wise determination to priori-
tise the risk-indicators that were most and least important, the top seven
(high priority) risk-indicators were identified using the following approaches:
 The Talley
 Priorities
 Top Seven

6.5.1 The tally

The tally was performed as follows. For each survey response to a risk-
indicator, an “agree” was allocated a value of +1 and a “disagree” a value of -
1. The answers to each risk-indicator across the survey statements were

Chapter 6 Measuring project status

81

then tallied. The risk-indicators receiving the highest positive values (most
agreement) as causes of project failure are shown in Table 6-2. Poor re-
quirements came out as the top reason.

Risk Risk-indicator Tallied Responses

1 Poor requirements 134

5 Lack of, or, poor plans 125

6 Failure to validate original specification and
requirements

113

30 Resources are not allocated well 109

16 Failure to communicate with the customer 106

25 Lack of management support 98

33 Unrealistic deadlines hence schedule slips 97

Table 6-2 The talley results

6.5.2 Priorities

The survey questionnaire asked respondents to pick out and prioritise what
they thought were the top seven risk-indicators. Since a high priority was
represented by a low number (Priority of 1 was the highest), for each re-
sponse, the risk-indicator was allocated (7- the priority) and the total alloca-
tion for that risk-indicator across all the surveys summed as a weighted re-
sponse. The weighted results are for the top seven risk indicators are shown
in Table 6-3. Again poor requirements came out as the biggest contributor
to project failures.

Risk Risk-indicator Weighted
response

1 Poor requirements 864

16 Failure to communicate with the customer 683

5 Lack of, or, poor plans 574

4 Lack of process and standards 361

25 Lack of management support 350

6 Failure to validate original specification and requirements 329

29 Political considerations outweigh technical factors 304

Table 6-3 The results by priority (top priority first)

Chapter 6 Measuring project status

82

6.5.3 Top seven

Since the actual position may be subjective, the number of times a risk-
indicator showed up in the priority list was also computed. The top seven
were extracted and are shown in Table 6-4. These results show a high de-
gree of consensus on these risk-indicators as causes of project failures.
There is a difference in the order of the sixth and seventh risk-indicator, but
the numbers are too close to draw any other conclusions.

Risk Risk-indicator Count

1 Poor requirements 99

16 Failure to communicate with the customer 86

5 Lack of, or, poor plans 77

4 Lack of process and standards 51

25 Lack of management support 51

29 Political considerations outweigh technical factors 45

6 Failure to validate original specification and require-
ments

44

Table 6-4 Top seven causes

Risk Risk-indicator

5 Lack of, or, poor plans

8 Low morale

15 Failure to collect performance & process metrics and report them
to management

25 Lack of management support

27 Lack of understanding that demo software is only good for demos

29 Political considerations outweigh technical factors

32 There are too many people working on the project

33 Unrealistic deadlines hence schedule slips

Table 6-5 Risk indicators with little differences between perception of
managers and non-managers

Chapter 6 Measuring project status

83

6.5.4 Sensitivity to management experience analysis

The sample size for respondents without management experience was 99.
The Tally responses for the risk-indicators were examined to see if there was
a difference in the responses between non-managers and managers with
various years of experience. Differences of less than 10% were noted for the
risk-indicators listed in Table 6-5. Since “poor requirements” don’t show up
in this list, there was a difference of opinion as to whether poor require-
ments constituted a risk-indicator in the responses between non-managers
and managers with various years of experience.

6.5.5 The “other” category

Several respondents added a small number of risk-indicators in the “other”
category of the questionnaire. These additional risk-indicators were
 Failure to control change.
 Rapid rate of change of technology.
 Low bidding to buy into contracts.
 Poor management.
 Lack of a technical leader.

Thus, the small student sample size of 19 seems to have identified most
of the important risk-indicators.

6.5.6 The risk-indicators most people disagreed with

Part of the analysis of the survey results was to determine which risk-
indicators received the most amounts of disagreement as causes of project
failure. This was done in two ways by determining the:
 Largest number of disagreements by the recipients.
 Least number of agreements by the recipients.

The risk-indicators receiving the largest number of disagreements are
shown in Table 6-6 and the risk-indicators that received the least number of
agreements as causes of project failure are shown in Table 6-7. In each
method of analysis, six risk-indicators showed up in the group receiving the
most amount of disagreement, namely:

 Failure to reuse code: A major advantage of object-oriented technology
is the ability to lower costs by reusing code. Yet 73% of those surveyed
did not agree with this risk-indicator.

 Hostility between developer and IV&V: This risk-indicator shows a team
problem and results in less than optimal costs due to the lack of cooper-
ation.

Chapter 6 Measuring project status

84

Risk Risk-indicator Responses

18 Failure to reuse code 88

3 Failure to use Independent Verification and Vali-
dation (IV&V)

80

32 There are too many people working on the pro-
ject

75

12 Client and development staff fail to attend
scheduled meetings

74

34 Hostility between developer and IV&V 70

31 The Quality Assurance Team is not responsible
for the quality of the software

68

15 Failure to collect performance & process metrics
and report them to management

67

Table 6-6 Risk-indicators receiving the largest number of disagree-
ments

Risk Risk-indicator Responses

20 Failure to use problem language 30

18 Failure to reuse code 32

34 Hostility between developer and IV&V 34

32 There are too many people working on the project 43

31 The Quality Assurance Team is not responsible for
the quality of the software

45

3 Failure to use Independent Verification and Valida-
tion (IV&V)

49

28 Management expects a CASE Tool to be a silver
bullet

53

12 Client and development staff fail to attend sched-
uled meetings

4

27 Lack of understanding that demo software is only
good for demos

55

Table 6-7 Risk-indicators receiving the least number of agreements as
causes of project failure

Chapter 6 Measuring project status

85

 There are too many people working on the project: This risk-indicator
supports Fred Brooks who described the problems associated with as-
signing additional people to projects (Brooks, 1982).

 Failure to use problem language: The use of problem language was
promoted as one of the major advantages by Ward and Mellor (Ward
and Mellor, 1985). Yet, only 34% of the respondents agreed that failure
to use it was a risk. Several did not know what the term meant.

 The Quality Assurance Team is not responsible for the quality of the
software: As discussed above, this was the only indicator that should
have shown disagreement.

 Client and development staff fail to attend scheduled meetings: This is
a symptom of poor communication between the client and the develop-
er. In addition, while there are other communication techniques availa-
ble, if meetings are scheduled, and not attended, negative messages are
sent to the project personnel.

 Failure to collect performance & process metrics and report them to
management: If measurements are not made and acted upon, how can
the process be improved? Yet 52% of the respondents disagreed that
this was a risk-indicator.

Risk This study CHAOS study

1 Poor requirements Incomplete requirements

16 Failure to communicate
with the customer

Lack of user involvement

30 Resources are not allocat-
ed well

Lack of resources

- Unrealistic expectations

25 Lack of management sup-
port

Lack of executive manage-
ment support

- Changing requirements and
specifications

5 Lack of, or, poor plans Lack of planning

Table 6-8 The correlation between this study and the CHAOS study

6.6 The CHAOS study
The Chaos study mentioned in Chapter 1 served as a reference to validate
this study (CHAOS, 1995). The Chaos study had identified some major rea-

Chapter 6 Measuring project status

86

sons for project failure. The five risk-indicators in this study that were cho-
sen as the most important causes for project failure also appear on the
CHAOS list of major reasons for project failure. The correlation between this
study and the CHAOS study is shown in Table 6-8. While “resources are not
allocated well” did not show up in the top seven lists of this study, it was
fourth in the Tally. Thus, this study supports the findings of the CHAOS
study.

6.7 Presence of risk-indicators in ISO 9001 and the soft-
ware-CMM

The elements of Section 4 of the ISO 9001 Standard and the five levels of the
Software-CMM (CMM, 1995) were examined and interpreted to determine if
the top student identified risk-indicators were covered in the ISO Standard
and in the Software-CMM. The ISO 9001 Standard defines the minimum
requirements for a Quality system, while the Software-CMM tends to ad-
dress the issues of continuous process improvement more explicitly than
does the ISO 9001 Standard. The findings are shown in Table 6-9 where an
‘X’ represents the presence of the indicator. The same two major risk-
indicators could not be mapped into either the elements of Section 4 of the
ISO Standard, or the Software-CMM, namely:
 [Risk 29] Political considerations outweigh technical factors.
 [Risk 33] Unrealistic deadlines hence schedule slips.

Thus, conformance to either or both Quality standards does not ensure
mitigating these risks.

6.8 The development of metrics to identify the presence of
these indicators

The large consensus on the major reasons for project failure seems to show
that if we could remove these reasons, projects would have a greater proba-
bility of success. The Chaos study showed that projects tended to succeed if
the opposite of these risk-indicators were present (e.g., good requirements
instead of poor requirements). The follow-up Voyages paper stated that the
causes of project failures were known, but it was unclear if the solutions
could be implemented The (VOYAGES, 1996). Thus it seems that the current
metrics paradigm is focused on measuring the wrong things and needs to be
changed to develop metrics to show the presence or absence of the major
risk-indicators identified above and any other known major causes of project
failures. So consider ways metrics can be developed for the following risk-
indicators:

Chapter 6 Measuring project status

87

Ta
bl

e
6-

9
Co

m
pa

ris
on

 w
ith

 IS
O

 9
00

1
an

d
CM

M

Ri
sk

Se
ct

io
n

4.
x

of
 IS

O
 9

00
1

So
ft

w
ar

e-
CM

M

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

1
2

3
4

5

1
o

o
x

x
x

x
o

x
o

o
o

o
x

o
o

o
o

o
o

o
o

x
x

o
o

4
o

x
o

o
x

o
o

x
x

x
o

o
o

o
o

x
x

o
x

x
o

x
x

x
o

5
o

x
o

o
x

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

x
x

o
o

6
o

o
x

x
o

x
o

x
o

x
x

o
o

o
x

o
x

o
x

o
o

x
x

o
o

16
o

o
x

o
x

o
o

o
o

o
o

o
o

x
o

x
o

o
o

o
o

x
x

o
o

25
x

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
x

o
o

29
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

30
x

o
o

o
o

o
o

o
x

o
x

o
o

x
o

o
x

x
x

o
o

o
o

x
o

33
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

Chapter 6 Measuring project status

88

 Poor requirements: Current requirements management tools do not
indicate if requirements are defective. That is, if they violate the re-
quirements for writing requirements (Kasser, 1995) page 166). This risk
can be mitigated by teaching personnel how to write good requirements
using techniques such as a Requirements Workshop (Kasser, 1995) page
259)24. Metrics can then be developed to measure the number of de-
fects in requirements documents and provide a Figure of Merit for the
document25.

 Failure to communicate with the customer: This activity mitigates the
risk of creating poor requirements and failing to cope with changes.
This activity should be part of the process, is covered in ISO 9001 and
should be measured. However, would just counting the number of
meetings and telephone calls during the SDLC provide useful infor-
mation?

 Lack of, or, poor plans: A project plan was recognized as a critical doc-
ument as far back as the US Military Standard for Systems Engineering
Management (MIL-STD-499A, 1974), yet many software projects still ei-
ther do not have one, or ignore it. Since it must be a living document
(Kasser, 1995) page 163), metrics need to be developed to monitor the
use/updates of the plan during the SDLC.

 Lack of process and standards: These are covered by the Software-
CMM and the ISO Standards covering the SDLC.

 Lack of management support: We can infer that projects need man-
agement support to succeed. We need to develop metrics to measure
the degree of visible management support. This risk-indicator supports
the prime reason that TQM fails if the application of TQM can be con-
sidered as a project.

 Failure to validate original specification and requirements: not per-
forming this function means that the system being built may not meet
the needs of the customer. Having a process and including this activity
as a step in the process can mitigate this risk.

 Political considerations outweigh technical factors: Metrics need to be
developed for this risk.

 Resources are not allocated well: This risk follows on from the lack of,
and use of a plan. Having and using a plan will mitigate this risk.

 Changing requirements and specifications: Section 5.2 presented a CRIP
Chart technique for monitoring progress and making both progress and

24 Or software developed for the purpose (Kasser, 2004), (Kasser, Tran and Matisons,
2003), (Kasser, Scott, Tran and Nesterov, 2006) such as Tiger Pro shown in Figure
17-3.
25 See section 17.6.2.

Chapter 6 Measuring project status

89

changes in requirements readily visible to top management and any
other interested parties. The CRIP approach can easily be built into re-
quirements management tools. However, just measuring the fact that
the requirements are changing will not mitigate this risk unless a change
tolerant development methodology is employed such as the Cataract
Methodology (Chapter 13) using the task management approach (Chap-
ter 15).

However, just changing the metrics paradigm may not be the complete
solution. Cobb’s Paradox states “We know why projects fail, we know how
to prevent their failure, so why do they still fail?” (VOYAGES, 1996). Now a
paradox is a symptom of a flaw in the underlying paradigm. Perhaps Deming
and Juran provided the remedy. Deming stated that 94% of the problems
belong to the system (i.e., were the responsibility of management) (Deming,
1993) page 35), and as already mentioned in Chapter 2, Juran was quoted by
Harington stated that management causes 80 to 85% of all organizational
problems (Harrington, 1995) page 198). In this survey, both managers and
non-managers tended to disagree with the two management risk-indicators.
Thus the there was a consensus that:

 [Risk 9] Management does not understand the SDLC, and
 [Risk 10] Management that does not understand technical issues were

NOT causes of, or contributors to, project failures.

The survey respondents disagreed with Juran and Deming. It is difficult
to understand how IT managers can make informed decisions to mitigate
technical risks if they don’t understand the implications of their decisions.
The resolution of Cobb’s paradox may be to use systems engineering to
reengineer F. W. Taylor’s work and develop a new paradigm for an infor-
mation age organization which performs most of the functions of middle
management without managers such as the one described in Chapter 3.

6.9 Deficiencies in the study
The following deficiencies are present in the study:
 The sample size is small.
 The level of expertise of the respondents is unknown.

6.10 Conclusions and recommendations
Except for poor requirements, none of the risk-indicators identified by this
study are technical. Thus, the findings support:
 Resources spent mitigating technical risks are wasted unless the major

risk-indicators discussed in this Chapter are also mitigated. Thus, it is
critical to develop and use good metrics for them.

Chapter 6 Measuring project status

90

 The need for continual training to provide managers with the skills to
become capable of effective technical management.

6.11 Areas for further study
This study raises some interesting areas for further study including:
 Determining which of the risk-indicators have a greater effect on the

schedule and budget?
 Correlating the general agreement with the risk-indicators to specific

ones. For example, did those who agreed with “political considerations
outweigh technical factors” agree with more risk-indicators than those
who didn’t agree with it?

Chapter7 The certified systems engineer

91

7The	certified	systems	engineer	–	it’s	
about	time!

This Chapter looks at improving systems engineering from the perspective of
the people who perform it, namely the systems engineers. Recognizing that
a process is only as good as the people who perform it, this Chapter defines
the requirement for the certification of systems engineers to establish a min-
imum level of competency for systems engineers. After a brief survey of
how other disciplines certify their practitioners26, this Chapter discusses the
derived requirements for implementing the certification process and rec-
ommends an approach to prototype and administer the certification process
for systems engineers.

7.1 Background
Recognizing that major government funded systems development has tradi-
tionally been characterized by cost and schedule overruns and other (spec-
tacular) failures, attempts have been made to alleviate the situation.

Major systems development takes place over a period of years in a sce-
nario wherein the customer makes periodic payments to the supplier based
on the supplier’s promise that all is well and the product is being manufac-
tured on schedule and within budget. It is only after months or years of
making these progress payments that the customer finds out that problems
exist and large amounts of money may have been wasted.

In an attempt to minimize the risk of cost and schedule overruns, the
customer has tried a number of different approaches to improving the prod-
uct and the process.

 The product - Quality Assurance, Test and Evaluation, and Independent
Verification and Validation (IV&V), try to ensure that the product not

26 The process starts with an out-of-the-box approach.

2000

Chapter 7 The certified systems engineer

92

only works, but is also the right product. Testing the intermediate
products as they are being built does this. Deming was very much in fa-
vour of building quality into the product in the first place (Deming, 1986)
page 11). He wrote, "Defects are not free. Somebody makes them, and
gets paid for making them".

 The process - "Quality comes not from inspection, but from improve-
ment of the production process” (Deming, 1986) page 29). The custom-
er has attempted to improve the supplier’s processes by emphasizing
“standards” and “best practices”. The basic assumptions being that
well-established processes, compliant to standards, minimize waste, and
hence saves money. The most widely known examples of these stand-
ards are the International Organization of Standards (ISO) 9000 series
and the system and software engineering CMMs.

However, a major cause of cost and schedule overruns has so far not
been addressed, namely the people involved in the systems engineering
process even though the situation has been recognized for a long time. For
example, twenty years ago, Robert Frosch the then Assistant Secretary to
the United States Navy, wrote, "Systems, even very large systems, are not
developed by the tools of Systems Engineering, but only by the engineers
using the tools” (Frosch, 1969).

Deming also wrote, "People are part of the system” (Deming, 1986) page
366).

This Chapter addresses the issue of improving the quality of systems en-
gineering by improving its practitioners. It does this by applying models
gleaned from other disciplines27. Systems engineering techniques were used
in this study as described herein.

The problem of poor systems development was stated at the beginning
of this Chapter. The next milestone was the realization that the people di-
mension was being ignored, yet in other disciplines there exist ways of guar-
anteeing the quality of the personnel. Consider these examples.

 Management - The Institute of Certified Professional Managers (ICPM)
provides certification for professional managers.

 Software Engineering – The American Society for Quality (ASQ) provides
various certifications for the quality disciplines. The state of Texas also
recently certified software engineers.

 Engineers – The Institution of Electrical Engineers (IEE) in the United
Kingdom offers the Chartered Engineer (CEng) designation for profes-
sionalism in engineers.

27 Out-of-the-box thinking.

Chapter7 The certified systems engineer

93

It is time for systems engineers to be certified in a similar manner to
attempt to guarantee that the personnel involved in the systems engineering
process are possessed of a degree of competency. The customers can then
feel that the more certified systems engineers working on their major sys-
tem development, the greater the probability that their funds will be ex-
pended in a more effective manner.

After much research in the non-systems engineering literature, it was
found (Lawler III, 1973) -

Ability = (Aptitude * (Training + Experience))
Where:

 Ability refers to how well a person can perform at the present time. If a
person lacks the ability to accomplish a task, no amount of motivation
or effort will lead to better performance (Kast and Rosenzweig, 1979).

 Aptitude refers to whether an individual can be brought through train-
ing and experience to a specified level of ability.

The purpose of certifying people as systems engineers is to ensure they
are possessed of a minimum level of training expertise and experience. The
employer can then address the issue of ability by providing the appropriate
motivation. However, the certifying agency cannot really certify the compe-
tence of the person. The agency can however certify that the applicant has
shown proof of compliance with the requirements for certification.

7.2 The certified systems engineer
Given the requirement for a Certified Systems Engineer, the problem then
becomes to define the model used to meet the requirement for certifying
systems engineers.

After further research analysing the similar situation in other disciplines
which certify practitioners, the model proposed for certifying systems engi-
neers is based on the Certified Manager (CM) designation by the ICPM in the
field of management.

Having decided on the model, the problem then decomposes into the
following derived problems.

1. What are the educational requirements?
2. What are the experience requirements?
3. How does the applicant for certification demonstrate compliance

with the educational and experience requirements?
4. Who will administer the certification program?

Consider each of them in turn.

Chapter 7 The certified systems engineer

94

7.2.1 Educational requirements

The education requirements must be set to for the applicant to demonstrate
an understanding of what systems engineers do, as well as how and why
they do it. Being able to do it by the book is not enough. The Systems Engi-
neering Body of Knowledge (SEBoK) (Faulconbridge and Ryan, 1999) could
be a start in meeting these requirements.

7.2.2 Experience requirements

Years of experience is not enough, the applicant must show continual
growth and success, perhaps by publications and presentations at INCOSE
symposia, conferences and Chapter meetings. There must also be require-
ments for leadership experience and demonstration of successful project
completion (Kasser, 1995).

7.2.3 Achieving compliance to the requirements for certification

Two models can be adapted. One approach requires that the applicant sit a
comprehensive examination written by the administering organization.
However, writing suitable questions is not a trivial task. They need to be
multiple choice to simplify grading the responses, but there is a skill in writ-
ing good questions. The question has to be phrased in such a manner that
the answer is obvious to someone who understands the subject while at the
same time two or more of the solutions seems correct to someone who does
not know the subject28.

Another approach would be based on achieving a master’s degree in a
discipline covering the SEBoK.

7.2.4 Administration

This is the hardest issue because the administering body has to have a de-
gree of credibility in the discipline. INCOSE is an organization in which any-
one interested in the topic can pay the fee and join. This is the same as the
Institute of Electrical and Electronics Engineers (IEEE). Membership does not
provide an indication that the member has achieved a threshold of
knowledge. On the other hand, the IEE has particular education require-
ments for degrees of membership

These organizations are not suitable as developers and administrators
for several reasons that include:

28 Based on a seminar given by the Educational Testing Service and experience in the
workshop that wrote the questions for the initial Certified Quality Manager examina-
tion for the ASQ.

Chapter7 The certified systems engineer

95

 They are not suited for developing and prototyping a certification pro-
cess in a short period of time.

 They don’t have the understanding of the SEBoK.

The Systems Engineering Society of Australia (SESA) with its links to
INCOSE and IEEAust seems to be a neutral body with the qualifications and
expertise to develop and administer the prototype certification process. Its
location in Australia, these days is no impediment. While it takes time to
move people and packages by air, electronic communications are essentially
as fast between Australia and the rest of the world as they are between any
two points within a hundred miles of each other in the US or in the European
Union.

The recommendation is that SESA be the administering body in its pro-
totyping phase.

7.2.5 Recertification

To ensure that systems engineers remain current with emerging techniques,
periodic recertification as employed by the ICPM is required.

7.3 Levels of certification
Recognizing that systems engineers are grown there should be master and
apprentice levels of certification. The ICPM uses a two level approach for
certifying managers. In systems engineering the recommendation is for two
levels:
 Certified Systems Engineer – someone who has demonstrated compli-

ance with both the educational and experience requirements.
 Associate Certified Systems Engineer - someone who has demonstrated

compliance with either the educational or the experience requirements.

7.4 The prototyping approach
It could take years to set up the perfect certification program. Getting all the
stakeholders to agree on the requirements and if specific applications meet
them is a major problem. The proposed solution to the setting up problem is
to attempt to avoid it by using the “Rapid Prototyping” approach to set up a
baseline, start doing the job, then measure the results and modify the pro-
cess using change control techniques. The proposed sequence is:

1. Develop a baseline version of the SEBoK.
2. Develop the experience requirements.
3. Publish the requirements for certification.
4. Begin certifying systems engineers based on academic qualifications

by the year 2002.

Chapter 7 The certified systems engineer

96

5. Evaluate the program after 12 months.
6. Upgrade the certification requirements every 24 months.
7. Develop an examination over the next 12 months.

7.5 Conclusions
There is a need for certification of systems engineers. Obtaining consensus
on the requirements for certification is not a trivial problem and will take
time and lots of discussions. A prototyping approach was suggested as a
way to minimize or avoid the consensus problem. SESA is an ideal organiza-
tion to prototype the certification process. It is time to go for it.

7.6 Summary
This Chapter looked at improving systems engineering from the perspective
of the people who perform it, namely the systems engineers. Recognizing
that a process is only as good as the people who perform it, this Chapter
defined the requirement for the certification of systems engineers to estab-
lish a minimum level of competency for systems engineers. After a brief
survey of how other disciplines certify their practitioners, this Chapter dis-
cussed the derived requirements for implementing the certification process
and recommended an approach to prototype and administer the certifica-
tion process for systems engineers.

Chapter 8 A framework for requirements engineering

97

8A	framework	for	requirements	
engineering

This Chapter views the SDLC from the perspective of a production system:
 focusing on the cost of both the process and the product;
 introducing the Framework for Requirements Engineering in a Digital

Integrated Environment (FREDIE) which is an object-oriented tool arising
from the Anticipatory Testing concept (Kasser, 1995) with the potential
to implement significant cost reductions in the SDLC;

 outlining how those cost reductions can be achieved; and
 presenting some Use Cases of the FREDIE tool.

The SDLC has evolved several methodologies since the early days of the
Waterfall model (Royce, 1970). One of them, the Spiral model (Boehm,
1988) pages 61-72) is the waterfall modified to place explicit emphasis on
Risk Management. However, even with Risk Management and the current
emphasis on Process Standards and Capability Maturity Measurement, the
developer working within the current production paradigm, cannot answer
two simple questions posed by the customer during the SDLC, namely:

 “What Do You Mean, You Can’t Tell Me How Much of My Project Has
Been Completed?” (Chapter 4).

 “What Do You Mean You Can’t Tell Me if My Project is in Trouble?”
(Chapter 5).

There has been a lot of research into building the right system and doing
requirements better (Glass, 1992). Much of that research has focused on
how to state the requirements in the form of a specification once they have
been obtained, using a requirements traceability matrix (RTM), and the tools
that incorporate a RTM. Consequently, while the implementation of good
system and software requirements management practices is believed to be
one of the first process improvement steps an organization should take, im-
plementation still remains a challenging problem (El_Emam and Hoeltje,
1997). One solution to this problem is Anticipatory Testing (Kasser, 1995).

2000

Chapter 8 A framework for requirements engineering

98

8.1 Anticipatory testing
Anticipatory Testing combines prevention with testing and is based on the
recognition that prevention is planned anticipation (Crosby, 1981) page 131).
The Anticipatory Testing approach concept is a control and information sys-
tem paradigm rather than a production paradigm. It views the SDLC from
the perspective of Information Systems, the application of Knowledge Man-
agement and modern Quality theory. It has explicit emphasis on Configura-
tion Management and building Quality into the process. From the Anticipa-
tory Testing perspective, a requirement can be thought of as consisting of
two parts; the functionality and the Quality criteria that define the measura-
ble attributes associated with the functionality. The term Quality is used
based on the definitions of Quality as “conformance to specifications”
(Crosby, 1979) page 131) and as “fitness for use” (Juran, 1988) page 11). For
example, a requirement to ingest sensor data into a system is made up of
the function that ingests the data and the minimum measurable amount of
data to be ingested over a specified period of time within a specified data
error rate. Having to consider both the functionality and Quality criteria
components of a requirement should tend to ensure that requirements are
quantifiable and hence verifiable at the time of acceptance. Then later when
the requirement is decomposed into subsystem requirements the flow down
of quantifiable subsystem requirements should also tend to ensure that the
capability provided by the system meets the performance desired by the
customer.

Anticipatory Testing is used within an Organizational Engineering or in-
tegrated product-process and management paradigm (Kasser, 1999). The
most significant factor in the Anticipatory Testing approach is the recogni-
tion that cost reductions (improvements) in the product and process do not
occur in a vacuum (Kasser, 1995). The product under construction is a sys-
tem and the process producing the product is a system. People working
within the context of an enterprise framework (system) build a product over
a period of time. Thus, the process, product and organization represent
three tightly coupled dimensions of the system and must not be considered
independently. In addition, every one of the systems changes over time29.
From the Anticipatory Testing perspective the [model] SDLC is a time-
ordered sequence of activities and can be considered as a series-parallel
set of phased Builds (mini waterfalls or cataracts) in a multithreaded envi-
ronment under the control of the Configuration Control Board (CCB)30.
Figure 8-1 presents this concept by showing the traditional Waterfall meth-

29 This concept was the basis for the PPPT model shown in Figure 3-2.
30 See the cataract methodology in section 13.

Chapter 8 A framework for requirements engineering

99

odology sequential elements connected via a CCB that allocates the imple-
mentation of requirements and subsequent changes to Builds in which:

Figure 8-1 Anticipatory testing view of the SDLC

 Engineering converts the real user needs into capability (functionality
and Quality criteria (requirements)) and arranges functionality into sets
(Builds) namely the design process.

 Management ensures that Builds are implemented in a phased manner.

8.2 Change management
From the Information flow perspective, the conceptual process of accepting
prospective requirements (before the baseline is set) contains the following
steps summarized in Figure 8-2.

Figure 8-2 Conceptual Process for accepting requirements

Chapter 8 A framework for requirements engineering

100

1. Identify a requirement (based on a traceable source need or regula-
tion) in the form of a Requirement request

2. Assign an identification (ID) number to the Requirement request.
3. Prioritise the requirement with respect to the other requirements.
4. Determine if a contradiction exists with existing accepted require-

ments.
5. Perform an impact assessment using an Integrated Product and

Process Team (IPPT). The impact assessment must:

o Estimate the cost/schedule to implement the requirement.
o Determine the cost/schedule drivers – the factors that are

responsible for the greatest part of the cost/schedule im-
plementing the requirement.

o Perform a sensitivity analysis on the cost/schedule drivers.
o Determine if the high cost drivers are really necessary and

how much negotiating the requirement with customers
can make modification based on the results of the sensitiv-
ity analysis.

o Make the decision to accept, accept with modifications, or
reject the request.

o Notify the originator.
o Document the decision(s) in the requirement repository.

6. If the requirement is accepted, allocate the implementation to a
specific future Build modifying the Build Plan and the WBS appro-
priately.

However, in order to perform the impact assessment and make in-
formed decisions at any specific time in the SDLC in an effective manner, a
certain amount of information is needed about the process as well as the
user’s need. In the existing production paradigm, much of this information
tends to be lacking or if present is contained in several different and usually
unconnected tools such as Requirements Management, Project Manage-
ment, a WBS, Configuration Control, and Cost Estimation, etc. This infor-
mation, herein named Quality System Elements (QSE) includes but is not
limited to:

 The Requirement - the imperative statement containing both the re-
quired functionality and its corresponding Quality criteria or other form
of representation.

 Unique identification number - the key to tracking.
 Traceability to source(s) - the previous level in the production se-

quence.
 Acceptance criteria – the answer the question “how will we know the

requirement has been met?”

Chapter 8 A framework for requirements engineering

101

 Priority - knowing the priority allows the high priority items to be as-
signed to early Builds, and simplifies the analysis of the effect of budget
cuts.

 Risk - any risk factors associated with the requirement.
 Traceability to implementation - the next level in the production se-

quence. Thus in software, requirements are linked to design elements,
which are linked to code elements, and so on.

 Estimated cost and schedule - these feed into the management plan
and are refined as the project passes through the SDLC.

 The level of confidence in the cost and schedule estimates - these
should improve as the project passes through the SDLC.

 Rationale for requirement - the extrinsic information and other reasons
for the requirement.

 Planned verification methodology(s) - developing this at the same time
as the acceptance criteria avoids accepting requirements that are either
impossible to verify or too expensive to verify.

 Keywords - allow for searches through the database when assessing the
impact of changes.

 Production parameters - the WBS elements in the Builds in which the
requirements are scheduled to be implemented.

 Testing parameters - the Test Plans and Procedures in which compli-
ance to the requirements are scheduled to be verified.

 Traceability sideways to document duplicate links - required when ap-
plying the QSE to an existing paper-based project.

 Access control parameters – national security classification or company
confidential as appropriate.

 Version control – for use in tracking changes. This is the version num-
ber, copies of older versions of the requirement and links to the CCB
change database.

8.3 The FREDIE paradigm
Requirements Engineering is a discipline that is evolving from its traditional
role as a mere front-end to the systems lifecycle towards a central focus of
change management in system-intensive organizations (Jarke, 1996). For
example:
 Dorfman and Thayer stated the definition of requirements engineering

as “the science and discipline concerned with analysing and document-
ing requirements” (Dorfman and Thayer, 1990).

 Kotonya and Summerville restated the definition of requirements engi-
neering as “the systematic process of eliciting, understanding, analysing,
documenting and managing requirements” (Kotonya and Summerville,
2000).

Chapter 8 A framework for requirements engineering

102

This Chapter proposes the next stage in the evolution of Requirements
Engineering by expanding the traditional RTM into an object-oriented data-
base represented by the set of QSE to be stored in a FREDIE instead of in the
several separate engineering and management tools currently in use. By
requiring a full set of QSE for each requirement at the time the requirement
is agreed to by the customer and contractor, some quality is built into the
structure of a project. For example:

 The cost and schedule impact of a requirement or a change is known (to
some extent) up front.

 The impact of change requests on the project can be more easily identi-
fied than in the paper-based production paradigm.

 The rational for the requirement, the acceptance criteria and the verifi-
cation methodology are documented early in the process minimize:

 The ambiguity in poorly written requirements
 The imposition of unrealistic and unverifiable requirements.

Figure 8-3 The FREDIE concept

The FREDIE agents31 provide an integrated digital environment and are
built as described in (Kasser and Cook, 2003). Access to the QSE via the
FREDIE Agents as shown in Figure 8-3 will allow decisions to be made more
rapidly and effectively. Thus the concept will improve the shared meaning
as well as El Eman and Madhavi’s three dimensions of Requirements Engi-
neering success32 (El_Emam and Madhavji, 1996):

31 Software acting upon the QSE data in the FREDIE.
32 Note the similarity to the Quality-Index.

Chapter 8 A framework for requirements engineering

103

 Cost effectiveness of the process.
 Quality of the Requirements Engineering products.
 Quality of the Requirements Engineering service.

8.4 The value of a FREDIE
The value of a FREDIE can best be implied by demonstrating its use in various
scenarios as shown herein.

8.4.1 The use of acceptance criteria to identify the customer’s real
needs

Acceptance criteria are important properties that not only drive the testing
stream of work; they also facilitate building the right system in the first
place. Someone pays for the defects to be produced, then pays for the re-
pairs (Deming, 1986).

8.4.2 Change request - impact assessment

The conceptual process for handling a change request is shown in Figure 8-2.
A source generates a change request, which is logged and assigned an identi-
fication number. Once the specific WBS element33 and/or requirement (as
appropriate) affected by the change are identified, then the links in the
FREDIE facilitate an informed assessment of the impact of the change on the
other elements (capability, cost, schedule, risk, WBS) within the project. The
impact of the requested change on the product and process (Builds) is as-
sessed and a decision made as to whether to accept or reject the request.
The source is then notified of the decision, if the change request is accepted,
then, if the configuration control process is fully operational:
 From the product perspective, the affected requirements and all subse-

quent project documentation must be changed to reflect the new situa-
tion. This is done by adding, deleting or modifying (a combination of
adding and deleting) requirements. The change may affect the capabil-
ity of components at various levels of the design.

 From the process perspective, the Build Plan must be changed to show
when and where the change will be implemented by changing the af-
fected elements of the WBS. The cost and schedule impact will then be
seen.

 The Systems Engineering Management Plan (SEMP) and Operations
Concept Document (OCD) must be modified as appropriate.

33 Implementing the requirement.

Chapter 8 A framework for requirements engineering

104

However, in most current instances the configuration control process is
defective and one or more of the steps listed above do not take place.

8.4.3 Project quality audit

If the FREDIE database is populated by the requirements, configuration con-
trol and project management data for a project, a Quality Audit may be per-
formed. The audit is performed by examining the data in the FREDIE data-
base. With the addition of the appropriate knowledge base for the specific
function, this audit may perform several functions including:
 Identification of some poorly written requirements by scanning the text

of the requirements for words that do not meet the requirements for
writing requirements (Kasser, 1995; 2002c).

 Identifying work that is not being done, or work that doesn’t have to be
done, by finding missing links in the traceability of the requirements to
the WBS.

 Identifying missing links in the traceability of the requirements to test
plans and procedures.

 Identifying missing activities or steps in the processes within the SDLC.
 Identifying other missing information.

8.4.4 Categorized Requirements in Process (CRIP)

The CRIP Chart technique discussed in Section 5.2 is a way to estimate the
percentage of project completion by looking at the change in the state of the
requirements over time from several perspectives. Implementing the CRIP
Chart technique using a FREDIE could help build “prevention” into the tool.
It would be straightforward to build intelligent software agents to automate
problem identification and assist human interpretation of the more subtle
trends identified by FREDIE agents as outlined for the PERCY (Chapter 3).

8.5 Summary
Viewing the SDLC from an information system paradigm rather than the cur-
rent production process paradigm has the potential to provide a significant
reduction in the number of project failures and overruns by building the
concepts of Quality and configuration management into the project tools.
The FREDIE tool approach is an innovative change in the continuing evolu-
tion of the tool set used for requirements engineering and management.

Chapter 9 Enhancing the role of T&E

105

9Enhancing	the	role	of	test	and	
evaluation	in	the	acquisition	
process	to	increase	the	probability	
of	the	delivery	of	equipment	that	
meets	the	needs	of	the	users

This Chapter views the organisation from the perspective of T&E which is
becoming increasingly important in current acquisition practices as a way to
ensure that the military equipment user receives equipment that conforms
to its requirements. Now, T&E really has two different roles in which:
 Testing – determines the degree of non-conformance to requirements

of “as-delivered” equipment (does the equipment do what it is sup-
posed to do?).

 Evaluation - determines the capability (functionality and performance)
of “as-delivered” or “as-built” equipment (what can the equipment ac-
tuality do?).

In recent times, recognizing that the documented requirements do not
generally represent the true needs of the user, the T&E role has expanded
itself to attempt to ensure that “as-delivered” equipment meets the needs
of the user. This Chapter discusses the reasons for, the differences between,
and how modern Quality theory, Information Technology and Knowledge
Management, can improve the various roles of T&E.

The traditional SDLC is characterized by large cost overruns, schedule
slips, and dramatic performance deficiencies in weapon, and automated
information systems. This situation can be depicted in the view of the SDLC
from the front end shown in Figure 9-1. The Figure represents s that the
system requirements are not only incomplete and poorly articulated, they

2000

Chapter 9 Enhancing the role of T&E

106

are also evolving faster than the contractor can build the system. This is a
different way of drawing the situation shown in Figure 5-2 and providing a
little more information pertinent to this discussion34.

Figure 9-1 View of the SLDC from the front end

As a consequence, there have been a number of reactions to this situa-
tion; including the development of the CMM and the requirement for con-
formance to process standards. A less-publicized, but important reaction
has been the expansion of the role of T&E.

9.1 The expansion of T&E
The view of the SDLC from the T&E and IV&V perspective which tends to get
involved in the program after the requirements have been frozen is shown in
Figure 9-2. T&E tends to see the requirements as poor, evolving, and in-
complete, and has to use their domain expertise of the application to do
their best to ensure that the equipment is fit for use. Dedicated T&E practi-
tioners in the Defence world, recognizing that the “as-delivered” military
equipment does not meet the real needs of the users, have expanded the
role of T&E to ensure that military equipment fielded in the Defence forces
(as-delivered) is suitable for use before being placed into service. The driv-
ers for this expansion of T&E include (Dennison, 2000):
 Increasing complexity of aircraft and systems.
 Longer development programmes.
 Longer periods of service.
 Changes in policy on airworthiness and liability.
 Funding pressures.

34 Figure 9-1 and Figure 5-2 present slightly different views of the SDLC abstract-
ing out the pertinent information that is relevant to the situation being discussed in
association with the Figure. This is an example of Simplicity as described in Chapter
18.

Chapter 9 Enhancing the role of T&E

107

From the systems engineering perspective, these drivers may be sum-
marized as:

Figure 9-2 View of the SDLC from the T&E perspective

 Equipment is being built to specifications that are poorly written, ill de-
fined, and incomplete.

 The need to manage changing requirements over the development and
Sustainment phases of the SLC.

9.2 T&E in the United States Air Force
In 2000, the US Air Force (USAF) T&E procurement of weapon systems was
divided into two roles (Pearson, 2000):
 Developmental test and evaluation (DT&E): the USAF uses DT&E to

learn and confirm, that is, to learn about the system’s capabilities, and
confirm that it performs according to specifications.

 Operational test and evaluation (OT&E): the USAF uses OT&E to answer
two fundamental questions.

1. Given a realistic environment, can the warfighter use the system to
accomplish the mission?

2. Given the same realistic environment, can the warfighter support
and maintain the system?

The USAF makes this clear distinction between DT&E and OT&E to rec-
ognize the fact that while a weapons system may meet all the design specifi-
cations, it may still fail to accomplish the mission.

Now from the perspective of modern Quality theory, finding defects af-
ter production is complete is not very cost-effective. This is because the
customer pays for the defects to be produced, then pays for the contractor
to affect the repairs (Deming, 1986). Thus the USAF T&E approach does not
embody modern Quality theory and only mitigates the symptoms. It does
not remove the root cause of the problem in the system namely the failure
to ensure that effort be expended to ensure that the mission requirements
are incorporated in the design specifications. This is the function of systems

Chapter 9 Enhancing the role of T&E

108

engineering since the goal of the system engineering effort (Kasser, 2000c) is
to provide a system that:

 Meets the customer’s requirements as stated when the project starts.
 Meets the customer’s requirements as they exist when the project is

delivered.
 Is flexible enough to allow cost effective modifications as the customer’s

requirements continue to evolve during the operations and mainte-
nance phase of the system lifecycle.

Meeting this goal on large systems developed over a period of years is
practically impossible with today’s technology. The current acquisition sce-
nario, which takes place within the context of a production paradigm, is
characterized by poor requirements and contains poor management of
change (Chapter 5). Now the universe of requirements embodies a number
of categories for Capability, namely:

1. Capability that is desired.
2. Capability mandated by external constraints liable to change, such

as Government regulations, etc.
3. Capability mandated by external constraints that are unlikely to

change, such as the laws of physics, etc.
4. Capability that does not matter to the user one-way or the other,

and the development contractor is notified of that situation.
5. Capability that does not matter to the user one-way or the other,

and the development contractor is not notified of that situation.
6. Capability that is not desired.
7. Capability that is desired but the customer does not know that it

can be provided.
8. Capability that is desired but cannot be provided.
9. Capability that is irrelevant to the equipment to be acquired.

The full set of user requirements for a system to be acquired tends to be
embodied in the first four of the categories.

9.3 Enhancing the traditional role of T&E
The traditional role of T&E is to ensure that the product meets its real re-
quirements. In order to perform this role as early as possible in the SDLC,
T&E has to ensure that the correct system is built in the first place. It is sup-
posed to do this by determining if the set of user requirements produced by
systems engineering are complete, verifiable and understandable. Verifiabil-
ity and understandability may be improved by ensuring that the format of
the written requirements conforms to the requirements for writing good
requirements (Kasser, 1995) and by developing a metric for the goodness of
requirements (Kasser, et al., 2006). Completeness, however, has been more

Chapter 9 Enhancing the role of T&E

109

difficult to achieve. In any event even verifiable and understandable re-
quirements change over the SDLC and the effects of change need to be
managed over the SDLC.

T&E has not been the only engineering area of activity to recognize the
existence of poor requirements engineering management. Requirements
engineering itself is evolving from its traditional role as a mere front-end to
the SDLC towards a central focus of change management in system-intensive
organizations (Jarke, 1996). Evidence of this evolution can be seen in the
changes in the definition of the term requirements engineering quoted in
Section 8.3.

Both systems engineering and T&E can make use of this concept in an
interdependent manner by using modern Quality theory, Information Tech-
nology and Knowledge Management techniques to expand the traditional
RTM into the QSE stored in an object-oriented database in a FREDIE tool
(Chapter 6). The format of the QSE data set is such that each user require-
ment accepted for the deliverable product by the contractor must be ac-
companied by both specific measures to determine when compliance has
been achieved, and a verification plan. This “forces” the customers to think
about how they will know that the requirement has been met at the time
the requirement is stated. So in the early phase of the SDLC, while systems
engineering are developing the requirements and implementation cost and
schedule estimates, T&E are clarifying the requirement through the use of
acceptance criteria and devising the verification methodology and the cost
and schedule estimates for the testing effort as shown in Figure 9-3. When
the domain knowledge goes into the systems requirements up front, there is
a greater probability that the system will function in the domain.

Figure 9-3 Building the right system

Chapter 9 Enhancing the role of T&E

110

9.4 How T&E can reduce some categories of missing re-
quirements

Traditional systems engineering has focused on performance and functional
requirements as shown in Figure 9-4. The requirements for the mission are
document in the System Requirements Document (SRD) together with the
known enablers and constraints. This process often results in the omission
of critical non-performance and hence in the delivery of systems that are not
fit for use.

Figure 9-4 Traditional requirements flow down

To maximize the completeness of requirements and reduce the effect of
non-mission-specific missing requirements, both systems engineering and
T&E must also ensure that system to be developed inherits generic require-
ments applicable to the specific type of product. For example, a low earth
orbiting (LEO) spacecraft should inherit a set of generic requirements that
have been refined from the experience gained in building these types of ve-
hicles over the last fifty years. These requirements relate to the thermal,
vacuum, and electromagnetic environment in space, launch, vibration, and
salt spray, etc. Should the LEO spacecraft be a communications satellite,
there would then be an additional set of generic requirements to be inherit-
ed. As a second example, equipment for use in jungle environments should
inherit a set of temperature and humidity requirements while the same or
similar equipment destined for use in a desert environment will inherit a
different set of temperature and sand-resistance requirements. These ge-
neric sets of inherited requirements, stored in knowledge bases, can ensure
that important but tangential non-functional requirements are not forgotten
in the design phase, e.g. ensuring that equipment that has to be shipped
actually fits through doors and air cargo containers. The addition of these
mission generic requirements is shown in Figure 9-5.

Chapter 9 Enhancing the role of T&E

111

Figure 9-5 Mission generic requirements

These generic sets of potential inherited requirements currently tend to
be based on the experience and education of the practitioners. If the project
has the expertise then those requirements are considered and incorporated
in the SRD. Should the expertise be lacking, they may be missed and have to
be incorporated further down the schedule necessitating rework and thus
contributing to cost escalations, and schedule delays. These requirements
or mission specific knowledge can be available in generic knowledge bases,
which then provide a set that must be tailored for each specific project. T&E
by virtue of being able to build a lesson’s learned database from the test
results of past projects is eminently suitable for providing much of the input
to populating the generic knowledge bases for various categories of systems.
For any specific new project, the roles of systems engineering and T&E will
depend on the project, but the generic functions might be:

 T&E provide the full generic set of requirements based on a whole range
of past projects in a knowledge base to reduce the number of missing
requirements. This is a corporate (support) activity.

 Systems engineering tailors the generic set for the project by importing
them into the project’s FREDIE tool. This is a project (production) activi-
ty.

 T&E verify that the tailoring performed by systems engineering con-
formed to the correct pattern for the system. This is a project (produc-
tion) activity.

Once the initial set of requirements has been accepted, experience has
shown that they will change over the SDLC. Efficient through-life systems
engineering, change management, and T&E, will require a planned, coordi-
nated and integrated approach as well as data/knowledge warehousing

Chapter 9 Enhancing the role of T&E

112

(Dennison, 2000). The FREDIE tool can facilitate change management by
virtue of its object-oriented data structure and its ability to use Knowledge
Management techniques in the form of smart agents. It is thus advisable if
not incumbent to ensure that a FREDIE tool is used for new projects to avoid
much of the costs now incurred in post-production rework and retest, to
facilitate managing requirements, design, development, integration, and
T&E, in a cost-effective concurrent manner.

9.5 Determining the capability of “as-delivered” equip-
ment

Another major role of T&E is to determine the capability of “as-delivered”
equipment. This is where Evaluation determines the:

1. Extent, by which the requirements have or have not been exceed-
ed.

2. Unanticipated emergent properties of the system that were not
predicted based on the functionality of the individual subsystems.

3. Suitability (performance) of previously owned equipment, commer-
cial off the shelf (COTS) or equipment built for another customer
and made available at a price or schedule that is less than that of
custom produced equipment.

9.6 Requirements and capability
Think of a requirement as consisting of both functionality and Quality crite-
ria. For example, a requirement to ingest sensor data into a system is made
up of the input function and the performance parameter for how much data
to ingest over a specific period of time. Capability can also be made up of
functionality and Quality criteria (what is done and how well it is done).
Thus “as-delivered” equipment has four possible states:

1. Capability is exactly equal to the requirements: the product meets
its requirements.

2. Capability exceeds requirements: either the performance parame-
ters exceed requirements, or un-required functionality is delivered.

3. Capability does not meet requirements: either the performance pa-
rameters do not meet requirements, and/or required functionality
is not delivered.

4. A combination of the previous three.

A comparison of the full set of user requirements and the capability (ex-
pressed in terms of functions and Quality criteria) for a typical small system
can be represented in Kiviat or Bar Chart format as shown in Figure 9-6. The
chart to use is the one familiar to the viewers.

Chapter 9 Enhancing the role of T&E

113

Figure 9-6 Kiviat and bar chart comparison

If Evaluation (1) is performed on behalf of the contractor, it may be used
to identify places where costs might be cut by reducing unneeded perfor-
mance (system exceeds requirements). This information is important in a
fixed-price mass-production environment, for example in the automobile
construction industry a per-item saving of $1 can be significant on a produc-
tion run of 500,000 units.

If Evaluation (1) is performed on behalf of the customer it may be used
to identify additional capability. For example, supposing an aircraft specified
to perform a turn at 2 G’s under certain circumstances is found to be capable
of a 4-G turn under the same circumstances. This additional performance
might allow the pilots to develop a new manoeuvre. The importance of this
role of T&E is that it provides information about the additional capability of
the equipment which then allows the user to develop additional missions or
uses that may not have been present in the original concept of operations
for the equipment.

9.7 Software T&E
The last 30 years have seen a transition from hardware-based systems to
software intensive systems operating on hardware platforms. T&E has to
ensure that the hardware-software combination is appropriate. Thus the:
 Evaluation (1) component of T&E needs to incorporate the evaluation of

excess capability offered by the COTS components included in the soft-
ware.

 Evaluation (2) component has been traditionally associated with physi-
cal characteristics such as temperature and electromagnetic compatibil-
ity issues. In today’s software intensive systems the Evaluation (2) com-
ponent will also need to address issues arising from the interaction of
the multiple complex software-based subsystems.

Chapter 9 Enhancing the role of T&E

114

9.8 Summary
T&E has several roles in the acquisition process. By:
 Identifying non-conformance to requirements, T&E prevents the deliv-

ery of unsuitable equipment to the end user.
 Identifying and reporting the capabilities of “as-delivered” equipment

over and above the user requirements, T&E provides a valuable service
to the user.

 Collecting generic requirements on types of systems and providing them
to systems engineering, T&E can help to minimize more and more cate-
gories of missing requirements in future systems.

By making use of modern Quality theory, Knowledge Management and
IT, T&E and IV&V are positioned to work with systems engineering to pre-
vent defects, test for non-conformance to requirements, and evaluate the
capability of “as-delivered” equipment in a cost-effective manner over the
entire SDLC.

Chapter 10 Systems engineers are from Mars

115

10Systems	engineers	are	from	Mars,	
software	engineers	are	from	
Venus35

This Chapter views the organisation from the perspective of its culture – the
people who comprise the organisation and how they communicate because
communications is a vital ingredient to the success of any enterprise. Once
work is split up between different people the need to communicate shows
up. One of the many barriers to successful communications is the back-
ground of each individual which assigns different meanings to words. For
example, consider the word “secure”. When told to “secure” a building it
has been related that,
 The Navy issues a purchase order for the building.
 The Air Force locks the doors and turns on the alarm systems.
 The Army evacuates the personnel, then locks the doors and turns on

the alarm systems.
 The Marines assault the building using ground troops and air support,

and then deploy squads in and around the building checking the creden-
tials of all who aspire to enter the building.

This example illustrates a subtle communications problem. When one
hears unknown words, such as in a foreign language, the failure to com-
municate is obvious. However, when one hears words that sound correct in
the context, the failure to communicate is not realised and sometimes pro-
duces serious consequences. This situation can happen when communica-
tions takes place between different organisations, different national cultures
and even different engineering specialties as demonstrated in this Chapter.
The differences between systems and software engineers has been chosen
as a demonstration, because in the last three decades of the 20th Century, a

35 Acknowledgment is given to John Gray for the variation on his book title “Men are
from Mars, Women are from Venus”.

2000

Chapter 10 Systems engineers are from Mars

116

period roughly matching software engineering’s history, the development of
complex projects seems to have resulted in massive failures. This Chapter
provides some insight that the failure of systems and software engineers to
communicate, and more importantly their failure to understand that they
are not communicating, may be a hitherto undetected cause of the failures
experienced in developing today’s complex projects. The Chapter then ex-
plores some of the reasons for the communications failure and recommends
an approach for improving the ability of systems and software engineers to
communicate.

Five thousand years of experience in hardware engineering have provid-
ed its practitioners with methodologies that have, in the main, been success-
ful. It was during that time that projects were engineered. Only in the last
three decades of the 20th Century, a period roughly matching software en-
gineering’s history, has the development of complex projects been plagued
by massive failures. Yet when seen from a historical perspective the com-
plex projects of the last three decades are no more complex than the large
engineering projects of the past, projects like the railroads, canals, pyramids
and military sieges, within the constraints of the then-available tools and
technology36. The growing recognition that the multidisciplinary environ-
ment in which today’s complex software intensive systems are developed is
characterized by poor requirements, poor change management and poorly
defined processes resulted in several approaches to improve software de-
velopment, including:

 The development of Computer Aided Software Engineering (CASE)
Tools.

 The focus on process and methodology embodied in the ISO/IEEE stand-
ards.

 The US DOD initiated Software CMM.
 The development of the “domain abstraction concept” in object-

oriented Methodologies (OOM).
 The adoption of the UML.
 The development of reusable generic software components.
 The inclusion of software engineers on IPTs.

However the adoption of these approaches will not guarantee that cur-
rent and future software based complex projects will not fail. This is be-
cause the projects that software engineers develop do not exist in a vacuum
(Pfleeger, 1998). Software cannot perform its function without an underly-

36 While we can see the products or outputs of those development processes, little
information about cost and schedule overruns or prior failures has survived through
the ages.

Chapter 10 Systems engineers are from Mars

117

ing hardware platform. Consequently, software engineers need to com-
municate with the systems engineers, hardware engineers and the other
members of the IPT.

During the course of some research Sharon Shoshani (the software en-
gineer) and I (the systems engineer) show in in Figure 10-1 realized that a
communications gulf existed between systems and software engineers, and
tried to identify it. After some discussion37 we developed a conceptual me-
ta-model of the system development process within the SLC. The meta-
model, which became our Rosetta stone, summarizes the development pro-
cess in the following manner: When faced with the problem of meeting the
customer’s needs:

Figure 10-1 The systems and software engineers

 Engineers don’t always reuse solutions or components that worked in
the past; they reinvent them or try to invent new ones.

 Even when engineers try to reuse solutions or components that worked
in the past, according to good engineering practice, there are two im-
plementation choices:

1. The problem is similar to other problems that have been solved in
the past. Thus this time around, providing a similar solution may
solve the problem. The process then becomes one of identifying
the applicability of the solutions of the past, to the problem of the
present and applying the elements of one or more solutions of the
past to solve the problem of the present.

37 No blood was shed in the process but we came close.

Chapter 10 Systems engineers are from Mars

118

2. The problem is unique so there are no known solutions. The pro-
cess then becomes one of identifying a solution that makes the
maximum use of existing solutions to past problems (components)
and the minimum use of components to be developed so as to re-
duce the risk of non-delivery on time and within budget.

At this time, while we came to the realization that while much of the
communication problem was with the semantics; we also identified other
underlying barriers including:

 Training and Background Differences
 A lack of respect for the other’s profession.
 The use of language
 The role of systems engineer in the SLC.
 Different Concepts.

Before considering each of the barriers to communications it is im-
portant to distinguish between a true barrier, and poor application of the
methodology since each engineering discipline has both good and bad prac-
titioners. Each barrier in the above list is discussed in this Chapter and sev-
eral examples are cited from the published literature as well as from person-
al experience.

10.1 Training and Background Differences
This section analyses the different training and background of software, sys-
tems, and hardware engineers.

10.1.1 Hardware Engineers

The most common background for system engineers is hardware engineer-
ing. Moreover, hardware engineering is often used as a reference when de-
scribing generic processes. Therefore it is important to understand the
background of the hardware engineer. Hardware engineers have been using
models and blueprints in the form of schematic diagrams and sketches since
the early days of engineering. They also use a component-based methodol-
ogy. However, they develop components that are physical in nature, e.g.
black boxes, printed circuit boards, integrated circuits and subsystems.
When hardware engineers design a digital system, they use integrated cir-
cuits. The hardware engineer will pattern match sections of the design to
the offerings in the vendor’s family of components. They then partition the
design to make use of standard components and design a small amount of
custom circuitry as required to interface between the standard components.
The physical nature of the components themselves enforces the mapping of
functionality onto physical components.

Chapter 10 Systems engineers are from Mars

119

10.1.2 Software Engineers

In its early days software development practitioners used two basic ap-
proaches. Some developed their own libraries of subroutines or modules for
functions, that once debugged, could be used in other programs. The major-
ity however:
 Tried to implement the same functions in various ways in different pro-

jects.
 Suffered from the “not invented here” syndrome and would not reuse

code from external sources.
 Failed to obtain the benefits of code reuse because they either changed

working code or reused the code in a context different from its original
one and the difference was the cause of the failure.

However, software engineers have since matured and created several
more important methodologies, including

 Componentware - Components are large grained entities that are de-
fined by their interfaces (services provided and demanded) and can be
independently developed and used (Szyperski, 1997). The component
approach promises to turn software development to software assembly
in a similar manner to the use of integrated circuits by the hardware en-
gineer.

 Design Patterns – a way of expressing general solutions to recurring
problems.

 Abstract modelling – a systematic way of capturing the system re-
quirements in an abstract, consistent and complete manner.

Software engineers are often in the vanguard when it comes to system
changes due to:

 The common misconception that it is easier to make software changes
than hardware changes.

 Software is responsible in most cases for the user interfaces – an area
constantly requiring changes.

Software engineers are often a product of a three-year undergraduate
course of computer and information science. This course seldom teaches
math and physics at a level that is considered basic for engineering (“What
do you mean you don’t know what a Fourier Transform is?” yelled the sys-
tems engineer at the software engineer.)

In a scan of the indices of books about software engineering and devel-
opment picked at random from those used for, or considered for use for,
teaching software engineering and management at the postgraduate level,

Chapter 10 Systems engineers are from Mars

120

the following books identified the term ‘systems engineering’ in their indi-
ces38 (Shumate and Keller, 1992; Pressman, 2005; Sommerville, 1998; Don-
aldson and Siegel, 1997; Brodie, 2001; Endres and Rombach, 2003). The
remainder made no mention of the term (Shlaer and Mellor, 1988; Marcotty,
1991; Jacobson, et al., 1993; Arthur, 1993; Yourdon, 1993; Gamma, et al.,
1995; Perry, 2000; DeMarco, 1995; Humphrey, 1995; Metzger and Boddie,
1996; Berg, et al., 1996; Yourdon and Argila, 1993; Budd, 1996; Fowler, 1997;
Weinberg, 1998; Bass, et al., 1998; DeMarco and Lister, 1999; Van Vliet,
2000; Britton and Doake, 2003). Even Peters and Pedrycz made no mention
of systems engineering in their index (Peters and Pedrycz, 2000). Thus a
generation of software engineers seemingly was being taught to engineer
software without knowing much about traditional engineering and what
function systems engineers perform.

In addition, software engineering, which does not directly address sys-
tems engineering, is also teaching methodologies for eliciting requirements
(e.g. Use Cases and business objects)39. At the same time it is ready to ac-
cept the system engineer as a requirement source in the manner of any oth-
er stakeholder.

10.1.3 System Engineers

Systems engineers in general have little if any formal training in systems en-
gineering. They graduated to the discipline from another engineering disci-
pline, mostly from hardware; therefore the software engineer claims that
they may not have an understanding of the nature of software. In addition,
software engineers are assuming the role of the systems engineer in soft-
ware-intensive systems.

The systems engineering community has recognized the need for formal
education and training in systems engineering (Chapter 7). A scan of the in-
dices of books on systems engineering for the word “software” had mixed
results. Software is cited in the index of several books on systems engineer-
ing (Rechtin, 1991; Thome, 1993; Eisner, 1997; Kendall and Kendall, 1997;
Martin, 1997; Blanchard, 1998; Faulconbridge and Ryan, 2003). And alt-
hough the requirements for software engineering are discussed in the con-
text of adapting MIL-STD-2167A (MIL-STD-2167A, 1998) to systems engi-
neering (Kasser, 1995), software only shows up in the bibliography section of
Martin (Martin, 1997) and fails to show up completely in two books
(Hitchins, 1992; Buede, 2000).

38 Two of the books are used in the management classes not the engineering classes.
39 This is in the B paradigm discussed in Chapter 28.

Chapter 10 Systems engineers are from Mars

121

“Yes” pointed out the software engineer “while Buede doesn’t list soft-
ware engineering in its index, he borrows a lot of terms and concepts from
software engineering” (Buede, 2000).

10.1.4 The lack of mutual respect

IPTs containing engineers from multiple disciplines develop today’s complex
projects. One of the characteristics of successful teams is respect for each
other’s specialty knowledge. Yet systems and software engineers, in general
tend to have little respect for each other. This section explores the following
reasons that system and software engineers fail to respect each other.
 The discipline of engineering
 Poor engineering practice
 The use of language

10.1.4.1 The discipline of engineering

Many of the software development personnel are not engineers but are
programmers (equivalent to technicians). Other software engineers lack a
formal background in math and physics, which tends to preclude them from
fully understanding a system that has more than just software in it. On the
other hand, many hardware and systems engineers have some programming
experience, which makes them believe that they are “software experts”.
Comments heard in organizations included:
 “I tried using a real time operating system 15 years ago and it didn’t

work, therefore it shall not be used in my project”.
 “This is something that my high school kid can program in a week”.

10.1.4.2 Poor engineering practice

Some software engineers feel that systems engineers seldom provide the
process-product deliveries expected from them. The software engineer
claimed that she knew of several organizations that had to retrain their sys-
tem engineers when going through the CMM process in order to be able to
qualify for the CMM Level 2. Other common complaints were:
 “They keep handing us new requirements on the way to the canteen”.
 “They fail to uncover all the system behaviour issues in their require-

ments, concentrating on the static and most apparent ones”.

These examples of poor systems engineering lowered the respect for
systems engineers in the eyes of the software engineers. On the other hand,
from the systems engineer’s perspective, Watts Humphrey created a CMM
for the individual called the Personal Software Process (PSP) (Humphrey,
1995).

“His process, used by systems and hardware engineers for years, is be-
ing treated with wonder by the software engineering community because of
the reception that the PSP is receiving” said the system engineer.

Chapter 10 Systems engineers are from Mars

122

“Please don’t mention the PSP,” she retorted, “The PSP never was an is-
sue in my community and was never actually mentioned or used”.

“But listen to this” said the systems engineer quoting “These techniques
(the CMM, PSP, and others like them) apply basic engineering and manage-
ment principles to software. Over the years, we software practitioners con-
vinced ourselves that software was different. The basics did not apply to us;
we needed to break the mould. We were wrong. Software is different in
some ways, but it has more in common with other fields than we want to
admit. We must use what others have proven works at work” (Phillips,
1998).

In his eyes this quotation proves what systems engineering has held for
a long time, namely, software engineering is one of many engineering disci-
plines.

The systems engineer then picked up a book on software reusability and
read, “In well-established disciplines like civil or electrical engineering, reuse
is based on the existence of previously coded knowledge. There are two
different levels of reuse to consider: (1) the reuse of ideas or knowledge and
(2) the reuse of particular artefacts and components. Electrical engineers,
for example, consult component catalogues, check which available part best
fits the design constraint, and, in some cases, relax the original design re-
quirements to take advantage of existing components (Prieto-Díaz, 1987).

He, the systems engineer, agrees with the author but thinks that it is
poor engineering practice to relax the original design requirements without
consulting the customer. He has seen it happen in the world of systems en-
gineering and knows that in the correct approach, the relaxation of require-
ments takes the form of a change request, then after the Configuration Con-
trol Board has accepted the request, a sensitivity analysis is performed and
an informed decision made together with the customer. He reads on to dis-
cover

“We propose a model for reusability based on these observations and on
the assumption that available components usually do not match the re-
quirements perfectly, making adaptation the rule rather than the exception.
Our approach is to provide an environment that helps locate components
and that estimates the adaptation and conversion effort necessary for their
reuse. The reuse process is as follows:

 A set of functional specifications is given. The user then searches a
library of available components to find the candidates that satisfy
the specifications.

 If a component that satisfies all the specifications is available, reus-
ing it becomes trivial”.

This is good stuff he thinks; software engineering has finally learnt to
use components properly. He then reads on and discovers the following
text:

Chapter 10 Systems engineers are from Mars

123

“More typically, several candidates exist, each satisfying some specifica-
tions. We call them similar components. In this case, the problem becomes
one of selecting and ranking the available candidates based on how well they
match the requirements and on the effort required to adapt the non-
matching specifications. Once an ordered list of similar candidates is availa-
ble, the re-user selects the easiest to reuse and adapts it”.

“Adaptation!” cries the systems engineer, “that’s like performing the
functional equivalent of drilling into an integrated circuit and attaching a
wire internally, instead of designing some external circuitry to interface the
wire to the component”.

“No” replies the software engineer, “Adaptation does not necessarily
mean changing or modifying the component. For example, when you bring a
110 Volt radio from the USA to Australia which uses 220 Volts how do you
adapt it?”

“Well you can change the power supply internally, or add a transformer
externally” was the reply.

“So the word adapt does not necessarily mean modify!” she said trium-
phantly.

“Yes” he admitted.
“So why did you immediately associate ‘adapt’ with ‘modify’?” She

asked.
“Because in my experience, that’s what software engineers did, years

ago,” he replied.
After some discussion they agreed that indeed it was the perception

that drove the reality, and even if today’s software developers did not modi-
fy existing components, the systems engineer’s perception, based on his
experience, shaped his lack of respect for software engineers.

In addition systems engineers have the perception that software engi-
neering much the same as any other engineering discipline is characterized
by poor practice. For example, as the systems engineer said, Boehm states
“the software drives system considerations such as performance and cost.
For example, in a recent survey of 16 books on object-oriented design, only
six had the word ‘performance’ in their index, and only two had the word
‘cost’” (Boehm, 2000) .

“From the system engineering perspective, requirements drive perfor-
mance and cost as well as functionality, which in turn drive the software and
all other parts of the system. So why should Boehm in the year 2000 have to
point out cost and performance to software engineering?” he asked.

She replied “You will not find cost in hardware engineering text books
either, simply because the books discuss technology and not management.
On the other hand I agree that in some areas of information systems tech-
nology performance is not treated with enough respect”.

Chapter 10 Systems engineers are from Mars

124

10.1.4.3 The use of language

Just as a common language opens the door to communication, so too the
lack of it erects a barrier not easily overcome (Cox, 1996). However, even
with a common language, communications is not guaranteed. While the
notion that Great Britain and the United States are separated by a common
language may be known (Shaw, 1925), its ramifications are subtle and it is
not an easy concept to understand unless one has been sensitised to it. An
example of the situation occurred in the mid 1970’s during contract negotia-
tions between the Communications Satellite Corporation (COMSAT) and Brit-
ish Aerospace. The language of the meeting was English. The meeting be-
came stuck on one point. Someone then suggested “tabling the issue”. Both
sides agreed and the meeting deteriorated. The situation was much im-
proved when the bi-lingual interpreter pointed out that the verb “to table”
means in:
 English - to place the subject on top of the table for immediate discus-

sion.
 American - to place the subject under the table or put it away for later

discussion.

Consider the following SLC analogue, concerning the meaning of the
word “component”.

The systems engineer quoted “A component of a system is a subset of
the physical realization (and the physical architecture) of the system to
which a subset of the system’s functions have been (will be) allocated”
(Buede, 2000) page 50).

They agreed that systems engineers live in the physical world and the
software engineer also stressed that components are not only physical but
are also logical. So they decided to look up the UML 1.3 definition of a com-
ponent and found “A component is a physical, replaceable part of a system
that packages implementation and provides the realization of a set of inter-
faces. A component represents a physical piece of implementation of a sys-
tem, including software code (source, binary or executable) or equivalents
such as scripts or command files” (UML, 1999).

“So components ARE physical” said the systems engineer, to which she
replied “What’s physical for us is logical for you”.

She explained further “software engineering separates the issue of
component (what it does) from both deployment (where it executes) and
from its instances (how many times it runs). It creates another layer of ab-
straction that has more in it than just the physical entity as thought of by
systems engineering “

They then looked up the definition of a component in UML Version 2.0
and found the definition of a component as “A modular unit with well-
defined interfaces that is replaceable within its environment” (UML, 2005).

“That means it can be physical or logical” she said.

Chapter 10 Systems engineers are from Mars

125

“I think I’m getting a headache” he sighed.

10.2 The role of systems engineer in the SLC
“Modern information technology products, even the software-intensive ones,
are complex enough to require application of techniques from both disci-
plines. Accordingly, it becomes important to understand the relationships
between relevant standards for systems and software engineering” (Moore,
1998).

Singh depicts the link between system and software as: “This standard
establishes a strong link between a system and its software. It is based upon
the general principles of systems engineering. The basic components of sys-
tems engineering (e.g., analysis, design, fabrication, evaluation, testing, in-
tegration, manufacturing, and storage/distribution) form the foundation for
software engineering in the standard. This standard provides the minimum
system context for software. Software is treated as an integral part of the
total system and performs certain functions in that system. This is imple-
mented by extracting the software requirements from the system require-
ments and design, producing the software, and integrating it into the sys-
tem” (Singh, 1995).

While mentioning systems engineering, the standard is silent as to the
role of systems engineers. A search through engineering textbooks and oth-
er sources for the role of systems engineers showed that systems engineer-
ing is defined in several ways40. These different perceptions of systems engi-
neering illustrate the point that systems engineers themselves have different
perceptions as to their role in the SLC (Chapter 2). For example, the systems
engineer pointed out that systems engineers might direct or perform:

 The high level design.
 Requirements and interface management.
 Activities that are not performed by other specialty disciplines.
 Inter-group coordination.
 The advocacy for the customer during the design and test phases of the

task and whenever the customer is not present.

“In addition”, he said, “in the 20th Century paradigm, which is based on
building hardware, systems engineers convert customer needs to system
requirements”, and quoted from Chapter 241 “Most of today’s systems engi-
neers really appear (work as) to be Requirements and Interface Engineers.
They have the responsibility to validate the requirements since there’s little

40 A representative sample of definitions is shown in Table 12-1.
41 Actually it was the paper that became the Chapter.

Chapter 10 Systems engineers are from Mars

126

point in building a system which conforms to requirements if the require-
ments are incorrect”.

“In the 21st Century paradigm, the system engineer should lead the IPT”.
He added, to which she pointed out, “some modern software-intensive sys-
tems can be developed effectively without systems engineers as long as the
software engineers perform the requirements elicitation function”.

To which he replied “Pfleeger begins the process of describing a system
by naming its parts and then identifying how the component parts are relat-
ed to each other (Pfleeger, 1998). The system is analysed in terms of objects
and activities. There is a role for requirements engineering to capture the
system level requirements, but the book is silent as to how the requirements
are allocated between the software and hardware subsystems”.

10.3 The use of concepts
As an example of the different interpretations of concepts this section ad-
dresses the differences in the following concepts:
 Inheritance
 Blueprints
 Models
 Objects and classes
 Architecture
 Adaption
 Use of viewpoints

10.3.1 Inheritance

Systems and hardware engineers use inheritance in the form of physical and
domain knowledge as shown in the following examples:
 When they build a printed circuit board they inherit mechanical aspects

(size and shape) from other printed circuit boards. The board may also
inherit connectors and interface circuits from previous boards.

 Spacecraft inherit environmental properties i.e. thermal vacuum, ther-
mal, and vibration.

 Aircraft inherit attributes to make them airworthy.
 Ships inherit attributes to stop them from sinking and protect them

from the long-term effects of seawater.

However they do not generally realize that they are employing the con-
cept of inheritance, other than the obvious case of reuse, so they have no
methodology for using the concept.

Software engineering uses inheritance as an integral part of object-
oriented techniques. In modern software engineering you can inherit any
classifier: interface, class, use case etc., thus creating a powerful way of ex-

Chapter 10 Systems engineers are from Mars

127

pressing and implementing ideas for specialization and generalization, ac-
companied by rules of refinement.

10.3.2 Blueprints

“We have always used Blueprints in the form of engineering drawings” he
said.

“We software engineer use blueprints as a metaphor claiming that soft-
ware is always a blueprint even when implemented,” she countered.

10.3.3 Models

“In my view a model is a representation of a product” he said. She replied “a
model is a way of expressing knowledge in an abstract way, yet exact, with-
out showing unnecessary details. We can use a model during analysis or
design. We can use a model to generate implementation. Software engi-
neers model as a way of communicating knowledge”.

10.3.4 Objects and classes

In software engineering:
 An object is a discrete entity with a well-defined boundary and identity

that encapsulates state and behaviour. An object is a role-centred enti-
ty with internal data and a set of operations provided for that data. An
object is an instance of a class.

 A class is the type of an object. A class is a descriptor for a set of objects
that share the same attributes, operations (methods), relationships and
behaviour. Examples are a set of people, places, things or transactions
that share common attributes and perform common functions (Dewitz,
1996). A class might capture real-world concept or design concept. A
class can inherit another class’s operation, relationship and behaviour
either for expressing commonalties or as a way of making a more specif-
ic class. Objects can be instantiated from every class (not just from the
more specialized one).

Objects and Classes originally were used in Object-Oriented Program-
ming (OOP) to achieve encapsulation, reuse, inheritance and abstraction,
later migrated to Object-Oriented Analysis (OOA) as a way of capturing the
real world (the holistic approach).

In systems engineering an object is a subsystem. There is no concept of
class. “It goes back to the fact that you are actually not inheriting” she
pointed out.

10.3.5 Architecture

In software engineering an Architecture is “The organizational structure and

Chapter 10 Systems engineers are from Mars

128

associated behaviour of a system. An architecture can be recursively decom-
posed into parts that interact through interfaces, relationships that connect
parts, and constraints for assembling parts. Parts that interact through in-
terfaces include classes, components and subsystems” (UML, 1999) or/and
“The set of design decisions about any system (or smaller component) that
keeps its implementers and maintainers from exercising needless creativity”
(D'Souza and Willis, 1998).

In systems engineering, the architecture of a system consists of the
structure(s) of its parts (including design-time, test-time, and run-time
hardware and software parts), the nature and relevant externally visible
properties of those parts (modules with interfaces, hardware units, and ob-
jects), and the relationships and constraints between them. There are a
great many possibly interesting relationships.

“On the first reading they both look the same” she said, then added,
“the software is adding a layer of abstraction that allows the developer to
extend his problem dimensions”.

“And later definitions include system evolution”, he replied. “For exam-
ple, the US DOD Architecture Framework (DODAF) provides the following
definition of an Architecture – ‘the structure of components, their relation-
ships, and the principles and guidelines governing their design and evolution
over time’” (DoDAF, 2004).

10.3.6 Adaptation

The concept of Adaptation was addressed above in Section 10.1.

10.3.7 Use of viewpoints

Systems engineers’ views tend to be constrained in the physical realm. So
they tend to mix the physical and abstract views (Lykins, et al., 2000). This
tends to result in a one-to-one mapping between the functional and the
physical. Software engineers may pick any number of abstract views and try
to separate concerns by splitting them to different yet related viewpoints.

10.4 Discussion
There are several reasons for the gulf separating software engineering from
the hard engineering disciplines including:
 Systems engineers tend to think physically, and move rapidly to solu-

tions. They do this using the reductionist approach of partitioning the
big problem into a number of smaller problems on the assumption that
if all the small problems are solved, then the big problem will also be
solved. They also have a wide range of all sorts of components to as-
semble into their architectures (resistors, computers, tanks, aircraft,
etc.)

Chapter 10 Systems engineers are from Mars

129

 Hardware components generally evolved from one specific application
to other applications. Systems and hardware engineers tend to focus on
solving the problem, if they have to build a component; it tends to be a
special purpose component optimised for that application. Hardware
engineers constructed their own computer cards until vendor compo-
nents become available. Similarly, companies developed proprietary
network protocols until standards were adopted. Software engineers
tend to think in abstractions and try to find an elegant solution to the
problem (sometime staying abstract for a longer period than the system
engineer feels comfortable with). In general, software does not have
the benefit of thousands of years of component development. Thus
when developing applications, software engineers may try to develop
them in a manner that allows them be reused in the same or in other
yet to be specified applications.

 A major barrier is the semantic barrier due to the different perceptions
of the use of words. Both sides must be made aware that the situation
is akin to Humpty Dumpty telling Alice that when he uses a word it
means just what he chooses it to mean — neither more nor less (Carroll,
1872).

Consequently, in an exchange of information, each side should use ac-
tive listening techniques to minimize loss of meaning across the gap in their
common interface.

10.5 Bridging the communications gap between systems
and software engineers

The key element in bridging the communications gap between systems and
software engineers is to use active listening enhanced by “pattern matching”
during discussions. For example, during a meeting discussing a scenario,
design issue or requirement, they can often be seen to be similar to previous
encounters. Thus when faced with a problem, the project team should first
review this Chapter which will sensitise them to the issues and the potential
barriers to communications. Only then should the discussions take place.
During these discussions different people may recognize different similarities
to previous encounters. Let each take a turn in explaining what pattern they
recognize and why. Thus for example
 Systems engineering may recognize a Type A scenario.
 Hardware engineering may recognize a Type B situation.
 Software engineering may see it as a Type C.
 Reliability engineering may see it as a cross between Type B and Type C.

Participants in the meeting should use active listening techniques en-
hanced by pattern matching to apply feed back to the communications pro-

Chapter 10 Systems engineers are from Mars

130

cess to maximize the probability of sharing the meaning. Active listening is a
standard technique for applying the feedback principle to inter-personal
communications to minimize errors in conveying the meaning from one per-
son to another. Active listening first recognizes that during a conversation,
most people do not listen to what the other person is saying. They are too
busy planning what they will say when the other person pauses. Standard
active listening comprises the following multi-step process:

When the other person speaks gives them your full attention and look
them straight in the eyes. Then begin the following iteration loop.

1. Listen to everything the other person says and try to understand it
fully.

2. Ask questions to clarify anything you don’t understand and analyse
the response.

3. Rephrase what you have heard in your own words and ask the
speaker if they meant what you are about to say. Use words such
as “if I understand you, then …”, or “Do you mean…”? This is the
principle of applying feedback.

4. If, after you have rephrased what has been said and the person
says, “No that’s not it!” or the equivalent, then go back to step 2.
You may need to invoke the STALL technique at this time (see be-
low).

5. When the speaker finally agrees with you, then you have (most
probably) actually communicated and shared meaning.

6. In modifying active listening by the use of pattern matching, change
Step 3 to incorporate the pattern by adding words such as “this re-
minds me of the [Type A Scenario]”, and “isn’t this similar to [Type
B]” and explain why you find a similarity in the current situation.
Use a metaphor appropriate to the other party such as sport.

 During the conversation use the STALL approach to regulate matters42.
STALL is an acronym for

 Stay calm
 Think
 Ask questions and analyse
 Listen
 Listen

You have two ears and one mouth, use them in that ratio.

42 Stalling is a good way to initially deal with most problem situations.

Chapter 10 Systems engineers are from Mars

131

10.6 Summary
This Chapter has provided some insight that the failure of systems and soft-
ware engineers to communicate, and more importantly their failure to un-
derstand that they are not communicating, may be a hitherto undetected
cause of the failures of today’s complex projects. The Chapter then explored
some of the reasons for the communications failure and recommended en-
hancing active listening with pattern matching as approach to bridging the
communications gap. Active listening is a well-established technique for
bridging communications problems and sharing meaning.

10.7 Conclusion
Systems and software engineers think differently, come from different back-
grounds and use different vocabularies, hence stretching the point, it can be
stated that systems engineers are from Mars and software engineers are
from Venus.

Chapter 11 Requirements for flexible systems

133

11Requirements	for	flexible	systems

This Chapter views the SDLC from the perspective of the product being pro-
duced and examines some attributes that make software and hardware sys-
tems flexible enough to be used for several purposes. Based on these at-
tributes, the Chapter then develops some issues that need to be addressed
in writing requirements for flexible systems. The Chapter concludes with
lessons learned from the success, failure, and poor performance of systems
that were designed to be flexible.

Figure 11-1 The context for the acquisition of a system

11.1 The context of a system
Systems in the acquisition phase have traditionally been considered as
closed systems. Once the need had been established within a specific con-
text, the context was rarely reconsidered during the remainder of the acqui-
sition cycle. With the advent of the term Systems of Systems this closed
system approach is transitioning into an open systems approach in which the
big picture has to be considered when undertaking systems integration
(Watts and Mar, 1997). So consider the system being acquired within the

2001

Chapter 11 Requirements for flexible systems

134

context or framework of its adjacent systems. The context diagram is shown
in Figure 11-1 where the system being acquired is the spiked object in the
centre. The system has an interface with several other adjacent systems but
not necessarily all the systems in the framework. The temporal perspective
of the evolution of the same set of systems within the framework is shown
in Figure 11-2. Each horizontal line represents an evolving system. The im-
plementation and delivery of such systems and software are often per-
formed in partial deliveries, commonly called “Builds” in which each succes-
sive Build provides additional capability43. Thus the sequential blocks in Fig-
ure 11-2 represent the operational phase of the different Builds within the
individual system’s SLC. The SDLC phases of the Build have been abstracted
out to simplify the figure. Lines begin when new systems are brought into
existence, and terminate when existing systems are decommissioned.

Figure 11-2 Evolution in context

11.2 The need for flexibility
The need for flexibility in systems is due to several reasons including:
 Extending of operational lifetimes.
 Rapid changes in technology, budgets, national objectives, threats.
 The desire to minimize the number of different components in the in-

ventory to simplify the logistics and maintenance aspects of Sustain-
ment.

43 See Chapter 13.

Chapter 11 Requirements for flexible systems

135

11.3 Requirements for flexibility
Consider the requirements for flexibility Flexible systems are those that can
be used for more than one purpose or mission, and especially purposes that
are developed after the systems have been deployed. While flexibility is
desirable in systems, for any specific purpose, a system designed for that
purpose would usually be more efficient than a multipurpose system. This
facet can readily be observed in the ubiquitous Swiss army knife. While it
can do many things, each function can be performed more easily with a tool
specifically designed for the function. Flexible systems have a high probabil-
ity of being used in scenarios that were unknown at the time the systems
were designed. Flexible systems tend to be used in a “design to inventory”
situation in which a problem scenario is met using equipment to hand. Thus
the more flexible the equipment can be made, the more scenarios it can be
used for. The principle of flexibility applies to refined or derived require-
ments in the design phase of a system as well as in the traditional system
requirements. In order to be able to write requirements for flexibility, the
attributes of flexibility need to be considered.

11.4 Attributes of flexibility
Attributes of flexibility determine the degree of reuse or compatibility with
other systems. One major attribute of flexibility is a “standard” for interop-
erability and requirements for flexible systems must specify the use of ap-
propriate standards. Consider the following examples.
 Table driven computer software
 Rack mounting hardware
 Standard Connectors
 Data format standards
 Size and shape of ordnance
 Bus connectors in computer based systems

11.4.1 Table driven software

Consider software used to display telemetry information on the screen of an
operator’s terminal. The software could be specifically programmed for dis-
playing different types of information (text, numbers, etc.) using a number
of different subroutines or a single generic table driven (parameter) module
could be used. For example, if a display routing was developed that accept-
ed:
 X coordinate;
 Y coordinate;
 Data to be displayed;
 Type of data (numeric, text, etc.);

Chapter 11 Requirements for flexible systems

136

 Colour of data;
 Format and decimal point information if numeric;
 Lower limit value;
 Lower limit colour;
 Upper limit value;
 Upper limit colour;

The routine then becomes reusable in other applications and programs
where data has to be displayed at various locations on a screen and the col-
our of the information changed according to different criteria. The cost of
developing and testing custom data display software modules is then avoid-
ed for future programs.

11.4.2 Rack mounting hardware

When hardware is made to fit in 19-inch racks, any facility equipped with the
racks can be used for multiple purposes.

11.4.3 Standard connectors

The use of standard connectors allows many types of equipment made by a
variety of manufacturers to be used interchangeably. The ubiquitous TV
antenna connector, telephone and Ethernet connectors are typical exam-
ples.

11.4.4 Data format standards

These allow for the interchange of information between equipment.

11.4.5 Size and shape of ordnance

Bullets of a specific calibre made by a variety of vendors may be fired from a
variety of weapons also made by a variety of vendors.

11.4.6 Bus connectors in computer based systems

A bus allows the user to add capability not present in the system. Thus the
bus in a personal computer (PC) allows for the addition of capability that
may not exist when the unit was manufactured. The evolution of the PC can
be told by the story of the migration of functions from daughter boards to
the motherboards once the functions became “standard”.

11.5 Capability drives requirements
In the traditional acquisition process, a system that met the requirements
was implemented within a set of constraints. However, the set of con-
straints did not include that of architecture, so the designers were free to

Chapter 11 Requirements for flexible systems

137

build their system around “any” architecture. However in an age of “Design
to Inventory” the designers now have to limit their implementation to some-
thing that exists within the relevant architectures. Thus the system engineer
now has to identify non-existent capability within the architectural frame-
work. This is done by an iterative process in the following manner.

1. Develop a set of operational scenarios or concepts for the system
and its adjacent systems in the context shown in Figure 11-1.

2. For each item (system) in the inventory, identify in which of the
scenarios it can be used.

3. When done, draw a table similar to Table 11-1. Use an “X” to signi-
fy that the inventory item has capability that allows it to be used in
the scenario.

Inventory Item Scenario

1 2 3 4 5

A X X X

B X X X X

C X X X

D X

E X X X

Table 11-1 Capability of inventory items in various scenarios

4. Examine the rows and columns in the table. Inventory items (rows)
that have X’s marked in several columns are flexible items. Any row
that is a subset of another row contains an item that is less flexible
than the other row and is a candidate for phasing out unless there
are specific reasons for not doing so (i.e. much lower in cost or has
additional capability not used in any of the scenarios).

5. Examine the capability of the items and use the total capability to
postulate additional scenarios. These scenarios to be based on evo-
lution of technology, changes to national objectives and threats,
etc.

6. Add columns for the additional scenarios to the table.
7. Insert an “X” in the appropriate place for the items that can be used

in the new scenarios.
8. Determine missing capability.
9. Start acquisition process for systems that would contain the missing

capability (a column without an “X”).

Chapter 11 Requirements for flexible systems

138

10. Go back to step 6.

This process is that of an evolutionary acquisition paradigm in which the
system being acquired is considered in the context of its adjacent systems.

Capability is word for which there is no consensus on its definition,
however there is agreement that it does consist of a mixture of equipment,
personnel and the preparedness and ability of the personnel to perform.
Mueller incorporates this mixture in the following definition:

“Defence Capability can be defined as the power to achieve a desired
operational effect in a nominated environment within a specified period of
time and to sustain that effect for a designated period” (Mueller, 2001).

Mueller states that the essential theme is that of taking the whole sys-
tem view during every phase of the lifecycle to optimise the system, rather
than trying to optimise individual parts and then integrate inputs.” Thus in
the development of Defence Capability, there may need to be trade-offs
between parts of the mixture, such as the complexity of operation of equip-
ment and the amount of training needed44. Each of these parts is defined as
a system in itself and at any given time, the individual elements are in a mix
of being acquired, being brought into service, being operated and main-
tained, and being phased out. This is one definition of a System of Systems45

namely “a system made up of elements that are not acquired or designed as
a single system but are acquired over time and are in continuous evolution”
(Allison and Cook, 1998). Permanent examples of this definition of a System
of Systems (Allison and Cook, 1998) are:

 Airlines.
 National Defence forces.

Temporary, ephemeral or virtual examples of such a System of Systems
(Allison and Cook, 1998) are

 Multi-national peace keeping forces.
 Project teams.

However, Hichins’ five layers of systems engineering46 define the con-
text for, and the type of, system in each layer, rather than use the term Sys-
tems of Systems for the upper layers. Each system that makes up Defence

44 Think of Defence Capability as a system experiencing the iterative multi-phased
acquisition cycle depicted in the process for the engineering of complex systems de-
scribed in Chapter 13.
45 For a discussion on the myth of Systems of Systems see Section 26.6.
46 See Section 12.1.2.

Chapter 11 Requirements for flexible systems

139

Capability operates within the context or framework of its adjacent systems.
The physical context perspective is as shown in Figure 11-1 and the temporal
context perspective is as shown in Figure 11-2.

11.6 Just in time requirements
Along with the evolutionary approach, some requirements must also be fi-
nalized using a just-in-time (JIT) approach manner (Davies, 1998)47. The JIT
approach was developed by the Ford Motor Car Company to reduce the
amount of capital tied up in raw materials (Ford and Crowther, 1922) page
143). The use of JIT requirements serves a different purpose. There are
many scenarios in which the functionality required can be met by today’s
technology and locking in a requirement to use the technology will lead to
poor performance in the future. For example, systems have been delivered
within the last few years with built-in 386 processors. The requirements
were written at a time when the 386 was the latest and greatest, but by the
time of delivery technology had long since passed the 386. Now there may
be good reasons for requiring specific instances of technology, however in
most cases delaying the decision works in the interests of the customer.
Delaying decisions is risky and such related decisions should be flagged in
the project management information system to minimize risks. Simple ex-
amples of the negative aspect of using fast processors were:
 Software written in Borland’s Turbo Pascal will not run on modern faster

processors due to delay loops embedded in the compiler failing to pro-
vide enough delay in the serial port interface.

 The IBM PC compatible ATs were released with CPU speed switches.
The purpose of the switch was to slow down the clock rate so that
games that ran on the original XT and used software timing loops would
still be useable on the AT.

In general the process is to examine the situation to determine the level
of risk. If the requirement can be met by a number of solutions, then the
decision as to which solution to implement may be deferred. As an example,
if the requirement is to provide a long-distance communications link, then it
may be met using a variety of technologies such as communications satellite,
High Frequency radio, microwave link, optical fibre. If several of the tech-
nologies will meet the requirement there is little risk in delaying the decision
and the capability provided by the technologies in existence at the time the
decision will be made will probably provide the customer with a more flexi-
ble system (extra capability).

47 And discussed in Chapter 15.

Chapter 11 Requirements for flexible systems

140

11.7 The backcasting approach
Another way to identify and develop flexible systems is to work back from
the solution. Traditionally we are taught to work forwards, in that several
(implementation-free) designs are proposed in response to the require-
ments and the optimal solution is then chosen. An alternative is to work
back from the solution (Gouillart and Kelly, 1995) page 49). The process is:
 Visualize the system in operation (try to focus on what the system does

rather than how it does it). This is the operations concept.
 Develop the system requirements.
 Identify the requirements that can be implemented in a JIT manner.
 Identify the “don’t care” requirements.
 Identify the “don’t want” requirements.
 Pick a design that implements the “want” and “don’t want” require-

ments and tends not to inhibit the “don’t cares”.
 Design the system making JIT decisions.

Implementing a backcasting approach requires the three factors listed
below. Since organizations with low CMM levels probably do not have a
suitable change control process, backcasting may only be appropriate for
higher-level CMM organizations. The three factors are:

 A contextual attitude –currently thought of as a System of Systems atti-
tude. External factors that could affect the system must be identified
and monitored and changes to the project made as appropriate.

 An effective change control process - The change control board must
make sure that decisions are made in a timely manner.

 The ability not to fixate on a single solution – something may happen
during the implementation phase which may require the approach to be
cancelled or significantly modified (e.g. technology break-through or
change to mission/business directions). Should this situation arise, the
CCB must act appropriately and not ignore the change in the context of
the project.

11.8 Examples of flexible and non-flexible systems
Consider the following sample of flexible and non-flexible systems from the
macro to the micro level.
 The LuZ SEGS-1 Project.
 NASA’s Space Transport System.
 The Division Air Defense Sergeant York gun.
 The Standard Central Air Data Computer (SCADC).
 The RCA Cosmac Microprocessor.
 The F-35 Joint Strike Fighter

Chapter 11 Requirements for flexible systems

141

 The USAF’s F-1000 engine

11.8.1 The Luz SEGS-1 Project

In the mid-1980’s the LuZ Group, a start-up joint Israel-American venture
were developing the world’s first commercial solar electrical power generat-
ing system (SEGS-1) (Kasser, 1984). As the first of its kind, SEGS-1 initially
only existed then as a vague concept. The station was to be installed in the
Mojave Desert in California and the Research and Development was to be in
Jerusalem. SEGS 1 was intended to generate electrical power from the sun
by focussing the sun’s rays on about 600 parabolic mirror trough reflector
collectors each about 40 meters long. The operation of each parabolic
trough reflector was monitored and controlled by a microprocessor based
local controller (LOC). Each LOC controlled a motor that positioned the pa-
rabola, and received information about the angle of elevation and the tem-
perature of the oil in the pipe positioned at the focus of the trough. Oil was
pumped through the piping, and as long as the LOC kept the reflector point-
ed at the sun within an accuracy of ±0.2 degrees, the oil was heated. The
hot oil was pumped thorough a heat exchanger to generate steam. The
steam drove a turbine that generated up to 15 Megawatts of electrical pow-
er. Figure 11-3 shows a partial depiction of the system. Although it was a
complicated system, it still had a conversion efficiency of about 40%, greater
than any alternative method of harnessing solar energy at the time. The
situation was very uncertain (flexible), namely:
 Control would be single axis (elevation) only.
 Power generation efficiency dropped rapidly if the mirrors were not

pointing at the sun. Actually the mirrors would radiate the heat instead
of absorbing it under off-pointing conditions.

 There were wide tolerances on the North-South alignment of collectors.
 The electromagnetic (E-M) interference environment at the site was

unknown.
 The sun sensors were mounted on the mirrors.
 There was an experimental heliostat based solar power generating plant

somewhere close to the site, and it was felt that the LOC’s sun sensors
could lock onto the heliostat tower under some unspecified conditions.

 There were no vibration specifications for the mirrors as a result of
movement or for any other cause.

 At that time, Jerusalem was at the end of a long delay in purchasing
parts due to geographical distance. This meant that purchase orders for
prototyping parts had to be placed before the designs were completed.

 The engineers and technicians spoke various combinations of Russian,
English, French, Romanian, and Hebrew, because most were immigrants
and there were times when there was no common language in a meet-
ing.

Chapter 11 Requirements for flexible systems

142

Figure 11-3 Part of the LuZ SEGS-1 system

 There were no production facilities for electronic circuits.
 There were few if any quality control concepts.
 There were few if any written specifications or procedures in the control

and electronics department
 There were some barely working prototypes.

The control system was designed by optimising the system as a whole,
using an object-oriented approach and allowing for uncertainty. Thus:

 The central computer predicted the approximate position of the sun and
commanded the LOCs to deploy to that appropriate position.

 The LOCs were designed as “state machines” (the states being - rest,
deploying, acquiring the sun, tracking, and stowing).

 Each LOC was able to sense (acquire) the sun using the sun sensor
mounted on the mirror.

 Each LOC was able to follow the movement of the sun using a lead-lag
algorithm to move along with the sun to “flywheel” during short periods
of cloud cover. Transferring the pointing functionality from the central
computer to the individual LOCs meant that the planned mini-computer
could be replaced by a $2,000 microcomputer48. This approach avoided
at least $US 300,000 in hardware and software costs for each of three
central control stations (CCS), namely about $900,000. In addition if the

48 This was still in the days of the 8-bit microprocessor.

Chapter 11 Requirements for flexible systems

143

control link failed the mirrors would continue to point at and track the
sun.

 The sensors used to detect the elevation angle of the mirrors were abso-
lute position indicators instead of relative indicators based on a revolu-
tion count. This design approach allowed the LOCs to recover quickly in
the event of power failures and spikes on the power line in the unknown
E-M environment. An alternative turn counting design would require
that the mirrors return to the Stowed position to reset the counters af-
ter a power failure losing heat during the reset sequence.

 The communications approach between the central computer and the
LOCs was based on a sequential polling approach at relatively slow
speeds using shielded twisted pair connectors and human readable
ASCII text messages.

 This approach allowed for servicing using palm held ASCII terminals that
eliminated the need to develop special test equipment. Low data rate
speeds were valid because the movement of the mirrors was very slow,
as was the rate of heating of the oil.

However, there while the concept of flexibility worked well in the con-
trol and electronics area, it was not employed in other departments. The
sun sensor provided an example of what can go wrong. The sun sensor used
a lens to focus the sun onto a pair of photo diodes with a separating spacer
as shown in Figure 11-4. During the assembly process, the diodes were
glued to a base plate with transparent glue. The physics department who
were building the sun sensors did not place a requirement that there be no
glue on the side of the diode illuminated by the sun. After all, the glue was
transparent. A year or so later, they found that the glue slowly became
opaque when subjected daily to the very high temperature at the focal point
of the lens. This phenomenon resulted in the need to replace all the sun
sensors. From a manufacturing perspective, there was little difference in
mounting the diodes if the glue could or could not be allowed to cover the
face of the diode, just a matter of care and a few extra minutes of time. No-
body asked about possible changes to the characteristics of the glue over
long periods of time under high temperature. If the requirement had been
placed on the process, not to allow glue on the face of the diode, the charac-
teristics of the glue under the high temperature conditions would not have
mattered and the expensive sun-sensor replacements would have been
avoided (Kasser, 1995). This is an example of introducing an unnecessary
failure mode by not utilizing the “don’t cares”. Thus the lesson learned is
that if it doesn’t make any difference don’t do it.

Chapter 22 discusses some of the problem-solving experiences in por-
tions of the LuZ system SDLC.

Chapter 11 Requirements for flexible systems

144

Figure 11-4 The Luz sun sensor

11.8.2 NASA’s Space Transportation System

The Space Transportation System commonly known, as the Space Shuttle is
an example of an approach to designing a flexible system based on the as-
sumption that “one size fits all”. Concerned about the cost of expendable
vehicles in an era when space flights were anticipated to become common-
place, NASA intended to reduce costs by designing a single reusable vehicle.
The result was an expensive vehicle and not an entirely reusable one since
expendable parts (booster and fuel tanks) are employed.

Experience has shown that one size does not necessarily fit all and a
more flexible solution may be expendable cargo carriers and a small reusa-
ble manned vehicle. The manned vehicle was to be a single stage to orbit
type of vehicle with the support requirements of a commercial passenger jet
aircraft. However such a solution for the shuttle replacement may still not
be politically correct since NASA has a large investment in manned mission
support. In a sense, since NASA does launch both the shuttle and expenda-
ble vehicles, they have implemented a mixed solution but at significantly
greater cost than a system designed for the mixed scenario. Once on-orbit-
docking capability had become routine, the mixed launcher solution became
very viable from a technical perspective. Yet the political impact of the re-
duction in support staff is a pertinent issue that seemingly remains. The
shuttle fleet is aging and no replacement program has been announced even
with the commitment to support the International Space Station.

11.8.3 The Division Air Defense Sergeant York Gun

The Division Air Defense (DIVAD) gun program was initiated by the US Ar-
my’s need for a replacement for the aging M163 20mm Vulcan Anti-Aircraft
gun and M48 Chaparral missile systems (Pike, 1999). The new self-propelled
anti-aircraft gun system was to be based on the M48A5 tank chassis, using as
much off-the-shelf equipment as possible. After examining two designs, the
Army selected Ford Aerospace and Communications Corporation as the con-
tractor in May 1981 and the gun was designated as the M247 Sergeant York.
Ford Aerospace’s design was based on the reuse of two additional existing
systems (capability) namely
 The weapons - twin 40mm L/70 Bofors Guns.

Chapter 11 Requirements for flexible systems

145

 The radar - a modified version of the Westinghouse APG-66 system used
in the F-16 Fighting Falcon.

The program suffered from problems, and by the delivery of the first
production vehicles in 1983 many problems remained, including:

 The radar’s inability to track low flying targets due to excessive ground
clutter. The radar could not distinguish between a hovering helicopter
and a clump of trees.

 When tracking highflying targets, the radar return from the gun barrel
tips confused the fire control system. Turret traverse was also too slow
to track a fast crossing target.

 The electronic counter-measures (ECM) suite could be defeated by only
minor jamming.

 The use of the 30-year-old M48 chassis design meant the vehicle had
trouble keeping pace with the newer M1 Abrams and M2/3 Bradley’s,
the very vehicles it was designed to protect.

These problems proved insurmountable, and in December 1986 after
about 50 vehicles had been produced the entire program was terminated.

11.8.4 The Standard Central Air Data Computer

The Standard Central Air Data Computer (SCADC) project (Howard, 2001)
was one of about a dozen standardization programs initiated in the late
1970’s by the US DOD in the desire to obtain substantial reductions in
equipment life-cycle costs through the wide use of digital common modules
in aircraft. It was thought that SCADC, because of the complexity and accu-
racy requirements of air data computation, would be a difficult concept to
bring to fruition. In addition, the SCADC program required the delivery of up
to 150 units per month shared between two winning suppliers, in a continu-
ously competitive leader-follower arrangement.

Two of the three largest US suppliers of airborne air-data systems, Hon-
eywell and Sperry declared the concept impossible and declined to bid, de-
spite the potential of $500 million of business. GEC Avionics in the UK were
interested in the business and designed and built a SCADC in a replacement
form fit-function for the then existing analogue components. The system
was a modular core set of standard Air Data Computer modules made ex-
tendable by the use of the 1553 data bus.

The ability to replace “old for new” in around 30 minutes on thousands
of the older inventory aircraft, raising the Mean Time Between Failure
(MTBF) rates from about 100 hours to greater than the aircraft operational
life-times and at the same time equipping them for plug-in new attack sys-
tems (via the 1553 data bus) was a significant technical innovation. Howev-
er, it also had the effect of putting many logistics people out of work over-
night. When the first prototypes were demonstrated, a huge effort was

Chapter 11 Requirements for flexible systems

146

launched in Washington by the Logistics fraternity to have the project can-
celled. This was supported by much of the US industry who could see an
outcome that depleted a large portion of their diverse business with the
danger of much of it going overseas. Although the SCADC production pro-
grams continued, the implementation in service was delayed for up to two
years. Another casualty was that all the other standardization programs fell
by the wayside.

By 1998, 6000 units in various configurations had been sold including a
version now modified into a digital flight control system adopted by the US
Navy for the F14. It was the most widely used digital system and most relia-
ble in all aircraft in the Gulf War. The program was arguably the most suc-
cessful of any airborne equipment supply program in the history of world
aerospace, and 100% of the production units came from the UK source, the
leader-follower concept being abandoned. It was estimated that by the time
GEC Avionics received the third or fourth order for production units, the di-
rect Defence savings exceeded $US 500 million.

11.8.5 The RCA Cosmac Microprocessor

The Cosmac was the first 8 bit CMOS microprocessor in the days when all the
rest were NMOS (mid 1970’s). It was ideal for environments in which the
low power and other characteristics of CMOS were desirable. However, it
was less than a success. The hardware circuitry was simple to use, however,
the software architecture was extremely flexible. It was so flexible that any
register could be programmed to serve any function. Most people ended up
using the device in fixed configurations and did not take advantage of the
flexibility provided by RCA.

11.8.6 The F-35 Joint Strike Fighter

The Joint Strike Fighter (JSF) is a multi-role fighter optimised for the air-to-
ground role, designed to affordably meet the needs of the USAF, US Navy
(USN), US Marine Corps (USMC) and allies, with improved survivability, pre-
cision engagement capability, the mobility necessary for future joint opera-
tions, and the reduced lifecycle costs associated with tomorrow’s fiscal envi-
ronment. The JSF will benefit from many of the same technologies devel-
oped for F-22 and will capitalize on commonality and modularity to maxim-
ize affordability (Pike, 2000).

The JSF program will demonstrate two competing weapon system con-
cepts for a tri-service family of aircraft to affordably meet these service
needs. However the needs are different as summarized in Table 11-2, name-
ly:

Chapter 11 Requirements for flexible systems

147

Service Variant Cost
FY94 US$

U.S. Air Force Conventional Take-off and Landing
(CTOL)

$28M

U.S. Marine
Corps

Royal Navy (UK)

Short Take-off and Vertical Landing
(STOVL)

$35M

U.S. Navy Carrier-based (CV) $38M

Table 11-2 JSF variations

 The USAF wants a multi-role aircraft (primarily air-to-ground) to replace
the F-16 and A-10 and to complement the F-22. The USAF JSF variant
poses the smallest relative engineering challenge. The aircraft has no
hover criteria to satisfy, and the characteristics and handling qualities
associated with carrier operations do not come into play. As the biggest
customer for the JSF, the service will not accept a multi-role F-16 fighter
replacement that doesn’t significantly improve on the original.

 The USN wants a multi-role, stealthy strike fighter to complement F/A-
18E/F. Carrier operations account for most of the differences between
the Navy version and the other JSF variants. The USN version of the air-
craft has:

 Larger wing and tail control surfaces to better manage low-speed
approaches.

 A strengthened internal structure to handle the loads associated
with catapult launches and arrested landings.

 A carrier-suitable tail hook.
 Landing gear with a longer stroke and higher load capacity.
 Almost twice the range of an F-18C on internal fuel.
 A design that is also optimised for survivability.

 The USMC wants a multi-role Short Take-Off & Vertical Landing (STOVL)
strike fighter to replace the AV-8B and F/A-18A/C/D. The Marine variant
distinguishes itself from the other variants with its short take-
off/vertical landing capability.

 The United Kingdom’s Royal Navy is looking for a STOVL (supersonic)
aircraft to replace the Sea Harrier. The Royal Navy’s JSF will be very sim-
ilar to the USMC variant.

The JSF concept is to build these three highly common variants on the
same production line using flexible manufacturing technology. Cost benefits
were expected to result from using a flexible manufacturing approach and

Chapter 11 Requirements for flexible systems

148

common subsystems to gain economies of scale. Cost commonality was
projected in the range of 70-90 percent; parts commonality will be lower,
but emphasis is on commonality in the higher-priced parts. The decision to
reuse many of the technologies developed for the F-22 on the JSF was made
before the problem of obsolescence was widely noticed. Thus the lifetime of
many of the F-22 components will be extended by their incorporation into
the JSF so something needs to be done about reducing their cost of obsoles-
cence49.

11.8.7 The USAF’s F-1000 engine

Some of the reliability and performance problems that plagued the USAF’s F-
1000 engine stemmed from the engine’s remarkable power and resilience.
Whereas the engine had been designed principally for speed, pilots of the
new F-15, the first aircraft powered by the F-1000 engine, found operational
advantage in rapidly changing speed; thus submitting the engine to “thermal
cycles” not envisioned as the engine was designed and tested. This was one
of several reasons the engine underwent nearly a decade’s worth of matura-
tional development before reaching its final potential (McNaugher, 2000).

11.9 Lesson Learned from these systems
Various lessons can be learnt from these systems including:
 Programs do not fail because the requirements change, programs fail

due to poor change management.
 There are risks when using capability in operational ways for which it

was not designed.
 Political considerations outweigh technical factors.
 The context in which the system is being acquired must be taken into

account.
 Too much flexibility can be worse than no flexibility.

11.9.1 Programs do not fail because the requirements change, pro-
grams fail due to poor change management

The tasks, products, and processes for managing change exist and have done
so for over 80 years (Farnham, 1920) and the US Military specifications cover
the ground in more than enough detail. Programs fail because of poor re-
quirements engineering management50 and the failure to re-evaluate re-

49 Note Stevens stated the then current estimate of the parts availability lifetime for
the F-22 was approximately 2 to 5 years (Stevens, 2003).
50 The B paradigm is inherently flawed (Chapter 28).

Chapter 11 Requirements for flexible systems

149

quirements in the context of:
 Changes in needs.
 Changes in technology.
 Changes in paradigm. The effect of air power on battleships was noted

in World War II. Today a paradigm shift is taking place due to the devel-
opment of low cost guided ordnance. Their effect on the JSF and other
expensive aircraft as well as surface ships has yet to be fully determined.

11.9.2 There are risks when using capability in ways for which it
was not designed

These range from the USAF’s F-1000 engine to the DIVAD. Sometimes the
excess capability embodied in flexibility leads to problems when equipment
is used out of context. Warriors use new equipment in ways that were not
envisioned by designers or tested in formal testing. Although this is a tribute
to the work of developers whose systems invite novel uses, it nonetheless
can produce embarrassing and costly technical problems as in the case of
the F-1000 engine (McNaugher, 2000).

In the DIVAD the integration of three systems produced an array of
technical and operational test difficulties (undesirable emergent properties)
that ultimately led to its cancellation. Some of these difficulties might have
been prevented had the situation been different. For example, the pilots
must have known about the problems with the flight radar at low altitudes,
yet the information was not passed to Ford Aerospace or the selection
board. There is thus a need for domain expertise when attempting to use
capability outside its original environment.

In addition, four successive generations of upgraded US forward area air
defence systems - from Mauler to Roland to Sgt. York to the Air-Defense
Anti-Tank System (ADATS) - were all cancelled, at a total cost of more than
$6.7 Billion over a period of 30 years (Pike, 1999). What does this mean in
an evolutionary acquisition paradigm in an era of extending system’s opera-
tional lifespan?

11.9.3 Political considerations outweigh technical factors

This lesson reinforces the findings in Chapter 5. The optimal technical solu-
tion may be resisted for political reasons, as in the SCADC and space shuttle
programs.

11.9.4 The context and environment must be taken into account

The advances in the capability of the vehicles the DIVAD was to support
would have been observed and affected the program had the project con-
sidered changes in the context and environment in which the DIVAD was to
be deployed. Not only must the context and environment be taken into ac-

Chapter 11 Requirements for flexible systems

150

count, the project must focus on the real needs not the solution unlike in the
DIVAD program. Take manned aircraft as another example. In World War I
they provided ability to see over the horizon and bring back information
about enemy dispositions. Then each side added guns to their aircraft to
stop the enemy from doing the same. This led to squadrons of fighter air-
craft fighting each other but in reality doing little to advance the war effort.
Guns also allowed ground support, which led to ordinance delivery on the
trenches and behind the lines. These situations led to specialized types of
aircraft, complex on-board computers, and latterly to the JSF. Yet the ques-
tion that really needs to be asked is - what are today’s real mission require-
ments and how can they best be met (with or without manned aircraft)?

11.9.5 Too much flexibility can be worse than no flexibility

In this situation the frame of reference is lost and the flexibility ends up
providing too many choices. This is probably why the RCA Cosmac micro-
processor failed to be adopted widely.

11.10 Conclusions
The conclusions from this study are that:
 Writing requirements for flexible systems is not easy and is pointless

unless effective intelligent change management tools are developed and
used.

 History repeats itself. The JSF is doomed to cost and schedule overruns
due to the lack of intelligent change management tools, as well as the
political considerations involved.

 The JSF may also be doomed in threat environments due to failure to
recognize a paradigm shift due to the introduction of guided ordnance.

 One size does not fit all, several may be required. This is an important
lesson which we repeatedly fail to learn from experience51.

 The amount of flexibility or excess capability incorporated into a system
needs very careful consideration.

51 ADA failed to become the DOD computer programming language, and UML will fail
to become the object-oriented world’s single descriptive language for similar rea-
sons.

Chapter 12 A framework for a SEBoK

151

12A	framework	for	a	systems	
engineering	body	of	knowledge

The demand for systems engineers and taught postgraduate degrees in sys-
tems engineering (by coursework) is growing around the world demand
(Fabrycky, 2003). However, meeting that demand is not a simple affair52.
There is a scarcity of qualified personnel who truly understand the nature of
systems engineering and can teach systems engineering subjects in academ-
ia. This Chapter:
 Looks at systems engineering from the academic perspective shows that

systems engineering has no recognized body of knowledge53 which ex-
plains why systems engineers have difficulty agreeing on exactly what
systems engineering should be and academia while teaching it has diffi-
culty in deciding if it is an undergraduate or a post graduate degree and
what subjects should be included in the course54.

 Summarizes a number of models of systems engineering and proposes a
framework for a SEBoK based on a combination of two of the models.

 Proposes a road map for the development of the SEBoK.
 Closes with some perspectives on systems engineering that become

visible when system engineering is viewed within the proposed frame-
work.

At present “systems engineering”:

52 Although this Chapter has a focus on the academic teaching for systems engineer-
ing, it would be appropriate to ask whether this is the best approach. In particular
one could ask whether this discipline is better developed via in-house training rather
than in a university. For example, it is worth noting that there is some evidence (e.g.
McCornick in R&D Management #2, 1995) that the Japanese value internal more
than external training.
53 By the systems engineers themselves.
54 Actually this is may be a little broader since one may also need to identify the pre-
requisites for starting to understand system engineering.

2001

Chapter 12 A framework for a SEBoK

152

 Covers a broad spectrum of activities from soft systems and organiza-
tions to hard computer based systems.

 Is a vague term with many different interpretations. Table 12-1 contains
a number of definitions of systems engineering. From one reading these
definitions, it may appear that the state of the art of systems engineer-
ing appears to be comparable to the state of electrical engineering be-
fore the advent of Ohm’s law (Chapter 2).

 Has a number of process standards and CMMs which are focused on
both the entire set and various subsets of activities involved in the de-
velopment of computer-based systems.

 Has no standard for competence (Chapter 7)55.

Table 12-1 A selection of definitions of systems engineering as pub-
lished in chronological order

The combination of advanced chemical engineering science with
the tool of electronic computers and the viewpoint of considering
the process as an entity (Williams, 1961).

Systems engineering considers the content of the reservoir of new
knowledge, then plans and participates in the action of projects and
whole programs of projects leading to applications. It considers the
needs of its customers and determines how these can best be met
in the light of all knowledge both old and new. Thus systems engi-
neering operates in the space between research and business, and
assumes the attitudes of both. For those projects which it finds
most worthwhile for development, it formulates the operational,
performance and economic objectives, and the broad technical plan
to be followed (Hall, 1962) page 4).

The science of designing complex systems in their totality to ensure
that the component sub-systems making up the system are de-
signed, fitted together, checked and operated in the most efficient
way (Jenkins, 1969).

Systems engineering covers the comprehensive aspects of engi-
neering practice, and the application of the modern rational ap-
proach to the formulation and solution of technical problems (Au
and Stelson, 1969) page 1)

The application of scientific and engineering efforts to transform an

55 See updated research findings in Chapter 24.

Chapter 12 A framework for a SEBoK

153

operational need into a description of system performance parame-
ters and a system configuration through the use of an iterative pro-
cess of definition, synthesis, analysis, design, test, and evaluation;
integrate related technical parameters and Ensures compatibility of
all physical, functional, and program interfaces in a manner that
optimises the total system definition and design; integrate reliabil-
ity, maintainability, safety, survivability, human engineering, and
other such factors into the total engineering effort to meet cost,
schedule, supportability, and technical performance objec-
tives.(MIL-STD-499A, 1974).

The transforming of an operational need into a description of sys-
tem performance parameters and a system configuration.
(FM_770-78, 1979)

A hybrid methodology that combines policy analysis, design and
management. It aims to ensure that a complex man-made system,
selected from the range of options on offer, is the one most likely to
satisfy the owner’s objectives in the context of long-term future
operational or market environments (M'Pherson, 1986) pages 330-
331).

An iterative process of top-down synthesis, development, and op-
eration of a real-world system that satisfies, in a near-optimal man-
ner, the full range of requirements for the system (Eisner, 1988)
page 17).

The management function which controls the total system devel-
opment effort for the purpose of achieving an optimum balance of
all system elements. It is a process which transforms an operational
need into a description of system parameters and integrates those
parameters to optimise the overall system effectiveness (DSMC,
1996) pages 1-2).

A robust approach to the design and creation of systems to accom-
plish desired ends (Chamberlain and Shishko, 1991) page 23).

An interdisciplinary approach to evolve and verify an integrated and
lifecycle balanced set of system product and process solutions that
satisfy customer needs. Systems engineering:
 encompasses the scientific and engineering efforts related to

the development, manufacturing, verification, deployment, op-
erations, support, and disposal of system products and pro-
cesses,

 develops needed user training equipments, procedures, and
data,

Chapter 12 A framework for a SEBoK

154

 establishes and maintains configuration management of the
system,

 develops work breakdown structures and statements of work,
and

 provides information for management decision making (MIL-
STD-499B, 1992).

A management technology (Sage, 1992) page 1).

The design, production, and maintenance of trustworthy systems
within cost and time constraints (Sage, 1992) page 10).

The intellectual, academic and professional discipline the principal
concern of which is the responsibility to ensure that all require-
ments for a bioware/hardware/software system are satisfied
throughout the life of the system (Wymore, 1993) page 5)

Integrates all the disciplines and specialty groups into a team effort
forming a structured development process that proceeds from con-
cept to production to operation. Systems engineering considers
both the business and the technical needs of all customers with the
goal of providing a quality product that meets the user needs (Sage,
1992).

A discipline created to compensate for the lack of strategic tech-
nical knowledge and experience by middle and project managers in
organizations functioning according to Taylor’s “Principles of Scien-
tific Management” (Chapter 2).

Comprises systems analysis, systems integration and human factors
including human-computer interaction.(Anderson and Dibb, 1996)

The activity of specifying, designing, implementing, validating, in-
stalling and maintaining systems as a whole (Sommerville, 1998).

A complex collection of interactive units and subsystems within a
single product, jointly performing a wide range of independent
functions to meet a specific operational mission or need (Shenhar
and Bonen, 1997).

A set of activities which control the overall design, development,
implementation and integration of a complex set of interacting
components or systems to meet the needs of all the users (DERA,
1997).

An interdisciplinary approach and means to enable the realisation
of successful systems. It focuses on defining customer needs and
required functionality early in the development cycle, documenting

Chapter 12 A framework for a SEBoK

155

requirements, then proceeding with design synthesis and system
validation while considering the complete problem. (INCOSE,
2000).

The design and analysis process which decomposes an application
into software and hardware (Brodie, 2001) page 249)

The process that identifies the technical characteristics and operat-
ing rules of that system that best achieves the objectives in ques-
tion (Westerman, 2001) page 6).

The art and science of creating systems (Hitchins, 2003)

Deals with the planning, development, and administration of com-
plex systems, particularly of computing systems (Endres and Rom-
bach, 2003) page 1).

Provides a framework, within which complex systems can be ade-
quately defined, analysed, specified, manufactured, operated, and
supported (Faulconbridge and Ryan, 2003).

Guides the engineering of complex systems (Kossiakoff and Sweet,
2003)

As such,

 Many systems engineers cannot clearly articulate the functions and
benefits of systems engineering (Chapter 10).

 It has been extremely difficult to establish a SEBoK for the diverse activi-
ties that are known by the term “systems engineering.”

As of 2003, there were over 100 postgraduate programs in the field ca-
tering to an ever-growing demand (Fabrycky, 2003). Even though there is no
widely recognized SEBoK, several starts have been made in assembling a
SEBoK including:

 A curriculum which has been presented for teaching a few subjects in
the context of an undergraduate degree (Faulconbridge and Ryan,
1999).

 A reference curriculum under development in 2006 by the Education
and Research Technical Committee (IERT) of INCOSE to inform teaching
at universities and training needs within a workplace-based employee
competency framework.

12.1 Potential Frameworks
Without a framework in which to place the collection of knowledge, the in-
formation may be incomplete. Several models that have the potential to act

Chapter 12 A framework for a SEBoK

156

as a contextual framework for a taxonomy of the SEBoK have been published
and the following models are briefly discussed in this Chapter:
 Allison and Cook’s systems hierarchy.
 Hitchins’ Five-layer Model.
 Sage’s Three Overlapping facets Model.
 Badaway’s Master of Technology.
 Kasser’s People Process Product Time (PPPT) enterprise framework.

12.1.1 Allison and Cook’s systems hierarchy

Allison and Cook proposed that military systems thinking and practice needs
to be extended to encompass a systems hierarchy which includes systems
and System of Systems) etc. (Allison and Cook, 1998). They proposed that
the focus is no longer only on the acquisition and use of individual systems,
but now there is a need to consider the “forest” of systems and how they
can be integrated in a variety of ways to satisfy different military purposes.
This extension of systems engineering presages the creation of new methods
and tool sets to support the new activities. In moving to address total capa-
bilities, systems engineers need to move away from acquisition of individual
systems, to the acquisition of super systems that are not obtained through a
single acquisition exercise, not necessarily under the direction of a single
authority. They proposed an approach based on architectures in which mili-
tary enterprise architecture56 would be developed that is in reality a dual
architecture:
 The Preparedness Architecture - describes the tasks and Defence ele-

ments needed to develop, train, and prepare the Force, and the rela-
tionships, interactions, and information flows between these elements.

 The Joint Operations (or War fighting) Architecture - describes those
tasks, operational elements, and information flows that support actual
operations (war fighting).

12.1.2 Hitchins’ Five-layer Model

Hitchins proposed the following five-layer model for systems engineering
(Hitchins, 2000):
 Layer 5 – Socio-economic, the stuff of regulation and government con-

trol.

56 The military enterprise architecture view is defined as “a description of the tasks
and activities, military elements, and information flows required to accomplish or
support a military function or operation”.

Chapter 12 A framework for a SEBoK

157

 Layer 4 - Industrial systems engineering or engineering of complete
supply chains/circles.

 Layer 3 - Business systems engineering - many businesses make an in-
dustry. At this layer, systems engineering seeks to optimise perfor-
mance somewhat independent of other businesses.

 Layer 2 - Project or System layer. Many projects make a Business.
Western engineer-managers operate at this layer, principally making
complex artefacts.

 Layer 1 - Product layer. Many products make a system. The tangible
artefact layer. Many engineers and their institutions consider this to be
the only “real” systems engineering.

Hitchins states that the five layers form a “nesting” model, i.e. many
products make a project, many projects make a business, many businesses
make an industry and many industries make a socio-economic system.
Hitchins adds that clearly, these statements are only approximate since-

 A socio-economic system has more in it than just industries.
 A business has more in it than just projects, and so on.
 Actual organizations may divide the work in different ways resulting in

either sub-layers, or different logical break points.

12.1.3 Sage’s three overlapping facets model

Sage suggests that system engineering needs to be dealt with as three over-
lapping facets … namely of structure, function and purpose which overlap
(Sage, 1992). Sage provides a definition for each and then divides each as
follows:
 Purpose - Systems Management and consists of enterprise, process re-

engineering, process maturity, organizational environment, organisa-
tional culture, strategic costs and effectiveness metrics, benchmarking
and strategic quality (TQM).

 Structure - Systems Methodology and consists of lifecycles, concurrent
engineering, structural effectiveness metrics, decision assessment,
structural economic analysis, cognitive ergonomics, configuration con-
trol and quality assurance.

 Function - systems engineering Methods and Tools and consists of per-
formance metrics, control and communications theory, requirements
engineering, functional economic analysis, programming languages,
simulation and modelling, operations research and quality control and
statistics.

If the actual core discipline of “programming” at the lowest layer was
replaced by “core specialist knowledge” this structure could be used for a
SEBoK. However, each of the three facets would still be complicated.

Chapter 12 A framework for a SEBoK

158

12.1.4 Badaway’s Master of Technology

Badaway argues that the need is for “engineering management” training,
and describes a possible postgraduate Master’s degree that is a hybrid mix
of a Master of Business Administration (MBA) and a Master of Engineering
that he calls a Master of Technology (MOT) (Badaway, 1995). However, it
has a high level of overlap with systems engineering. The starting place is
that the National Research Council defines MOT as linking “engineering, sci-
ence and management disciplines to address the issues involved in the plan-
ning, development and implementation of technological capabilities to shape
and accomplish the strategic and operational objectives of an organisation”.
In particular “shaping” is very important since most systems engineering
starts with the idea of filling a pre-defined requirement, but in reality the
technology often produces new capability that meets what no one had en-
visaged as a requirement when the project began. The overall framework he
proposes is to meet the following eight primary needs.
 How to integrate technology into the overall strategic objectives of the

firm.
 How to get into and out of technologies faster and more efficiently.
 How to assess/evaluate technology more efficiently.
 How to accomplish technology transfer.
 How to reduce new product development time
 How to manage large, complex and interdisciplinary or inter-

organizational projects/systems
 How to manage the organizations internal use of technology.
 How to leverage the effectiveness of technical professionals.

12.1.5 Kasser’s people process product time (PPPT) enterprise
framework

Robert Frosh, when he was Assistant Secretary to the United States (of
America) Navy wrote: “Systems, even very large systems, are not developed
by the tools of systems engineering, but only by the engineers using the
tools” (Frosh, 1969). Engineers are people. The People Process Product
Time (PPPT) framework or model (Chapter 3) emphasizes effective people
(Covey, 1989) since it is people working within the context of an enterprise
framework (system) who build a product (the system) over a period of time.
The most significant factor in the PPPT approach is the recognition that cost
reductions (improvements) in the product and process do not occur in a
vacuum (Kasser, 1995). The product under construction is a system and the
process producing the product is a system (Martin, 1996). Thus, the process,
product and organization represent three tightly coupled systems or dimen-
sions of Quality and must not be considered independently. In addition,
every one of these systems changes over time. The PPPT enterprise frame-
work:

Chapter 12 A framework for a SEBoK

159

 Applies systems engineering to the organisation.
 Is a control and information system paradigm rather than a production

paradigm.
 Views the enterprise as a process as shown in Figure 3-2 from the per-

spective of Information Systems, the application of Knowledge Man-
agement, and modern Quality theory.

 Has explicit emphasis on Configuration Management and building Quali-
ty into the process and hence into the enterprise.

 Combines prevention with testing and is based on the recognition that
prevention is planned anticipation (Crosby, 1981).

 Is used within an organizational engineering or integrated product-
process and management paradigm (Kasser, 1999).

From the PPPT perspective, systems engineering is a time-ordered se-
quence of activities in a multi-threaded environment managed by the CCB57.
PPPT combines prevention with in-process testing in a synergistic manner to
eliminate defects and so reduces project cost and schedule overruns. The
PPPT task management methodology:

 Emphasizes teamwork and customer involvement.
 Is loosely based on a methodology used for at least eight years in a task-

ordered environment by a large contractor to NASA.
 Improves on the basic methodology by adding the elements of Quality.

The improvement:

 Ensures work is performed in a cost-effective manner.
 Maps very well into managing tasks performed in geographically

distributed locations by different elements of a distributed organi-
zation.

 Intrinsically incorporates task management into program manage-
ment.

 Builds the Quality into the task.
 Reduces the cost of doing work.
 Allows the needed staffing levels and skill-mix to undergo the gradual

change required to perform the planned work in an optimal manner as
tasks progress through their lifecycle.

 Monitors task and contract performance relative to the baseline plan.
 Develops measures of effectiveness of the work.
 Incorporates control functions that effectively deal with deviations from

the baseline plan in a timely manner.

57 See Chapter 13.

Chapter 12 A framework for a SEBoK

160

Deming wrote “Improvement of quality and productivity, to be success-
ful in any company, must be a learning process, year by year, top manage-
ment leading the whole company” (Deming, 1986). Drucker discussed learn-
ing organizations as organizations in continuous change (Drucker, 1995).
PPPT includes:

 Continuously monitoring and improving the task: Training before do-
ing, and applying lessons learned on one project to the next (the feed-
back loop). Prevention and continuous improvement are important el-
ements of the MBNQA.

 Making the Technical Performance Measurements: Supplying the
standards and controls for the current task to provide:

 Visibility of actual vs. planned performance.
 Early detection or prediction of problems which require manage-

ment attention.

 Managing changes: Supporting the assessment of the program impact
of proposed change alternatives.

 Acting as the advocate for the customer: During the design and test
phases of the task and whenever the customer is not present.

 Performing Risk Management: Identifying and mitigating risks to future
tasks.

 Tracking implementation: Allowing the Program Manager to ensure
that tasks are completed on schedule.

Figure 12-1 Proposed 2D Hitchins-Kasser-Massie SEBoK framework

Chapter 12 A framework for a SEBoK

161

12.2 A framework for the SEBoK
Each of the definitions and models provide a different insight or view. Per-
haps the best approach to develop a framework is a blend. The Hitchins
five-layer model provides a useful basis for illustrating how each layer “lives
within”, and contributes to, the one above and how enablers and constraints
at one layer affect the lower layers. However, a broader58 perspective is
needed for a more complete SEBoK. Now if the Hitchins five layer model is
enhanced by adding the second dimension of the phase in the SDLC or time,
it becomes the Hitchins-Kasser-Massie framework for understanding sys-
tems engineering (HKMF) shown in Figure 12-1 59. The resulting matrix al-
lows one to provide both the perspective (i.e. layer) and purpose (i.e. phase)
for each activity needed in system engineering and hence a justification for
why it is needed. For example, each of the Hitchins’ layers contains different
processes needed to look at the overall aims, obtaining the requirements,
creating60, introduction into service, using, evolving, and retiring a system.

Figure 12-2 Badaway’s place in the frame

When the frameworks and models discussed in Section 12.1are placed
in the HKMF, it can be seen that:

 Badaway’s framework focuses much more on the upper layers of
Hitchins’ model over the SDLC as shown in Figure 12-2.

58 Layers 3-5 are often regarded as “management” rather than “engineering” and as
such in the academic world are taught via MBA courses.
59 And redrawn some years later by Ms. Xuan-Linh Tran as Figure 21-3.
60 Creating includes design, build and testing.

Chapter 12 A framework for a SEBoK

162

 Sage’s model straddles the HKMF as shown in Figure 12-3 advancing up
the layers as the SDLC progresses over time.

 Checkland’s ‘s soft systems approach fits into the HKMF in the higher
layers as the system is being developed and used as shown in Figure
12-4 (Checkland, 1991).

 The various activities performed in the realisation of systems can tenta-
tively be mapped into the HKMF as shown in Figure 12-5.

Figure 12-3 Sage’s place in the frame

Figure 12-4 Checkland’s place in the frame

 INCOSE’s current focus seems to be as shown in Figure 12-6.

Chapter 12 A framework for a SEBoK

163

 The PPPT model which describes the product in the context of the pro-
cess, people and organization and the changes over time as the product
is constructed allows more dimensions to be added to Hitchins’ layers.
By combining the PPPT and Hitchins’ models into a multi-dimensional
framework, it should be possible to identify appropriate knowledge,
standards, methodologies, skills and competencies for each layer within
the framework of products, processes, people and organisation. The in-
formation appropriate to each layer should be identifiable from experi-
ence and verified from the literature.

Figure 12-5 Mapping activities into the frame

Figure 12-6 Current focus of INCOSE mapped into the frame

Chapter 12 A framework for a SEBoK

164

Development of the draft SEBoK should take the following form. For
each layer in the HKMF, the following should be done in an iterative manner:

 Develop a glossary of terminology. The glossary is to contain references
to the source of the use of a word within a given context.

 Develop a concept of operations of the activities being undertaken by
means of scenarios or Use Cases.

 Based on the problem solving activities, identify the knowledge needed
and appropriate methodologies for cost effective work.

 Develop the vertical interfaces to adjacent layers in the model.
 Identify the horizontal interfaces to adjacent professions to determine

the degree of overlap between systems engineering and other profes-
sions.

 Search the literature to provide sources for the knowledge in the layer.
 Document the SEBoK using the software engineering body of knowledge

as a guide in a similar manner to the way that the systems engineering
CMM was developed from the software CMM.

Each layer of information then needs to be verified and validated. To
ensure the appropriateness of the information in each layer, representatives
from industry and academia should verify the information. Once the first
draft of the SEBoK has been compiled it should be used to develop a curricu-
lum for postgraduate education in systems engineering. Then the
knowledge has to be mapped into subjects and appropriate instructors
found. Due to the broad nature of the material, it can be expected that no
single academic institution will have expertise in all subjects. Thus while
they may be able to teach them, Industry would be better off if all the sub-
jects were taught by experts. Some kind of teaming arrangement using dis-
tance education techniques would provide the optimal program (Kasser,
2000b).

12.3 Perspectives from the HKMF
Even now with a rudimentary HKMF in place, several causes of confusion can
be identified. For example:
 Semantic confusion – a word may have a different meaning in a differ-

ent layer. For example, the term “capability” has different meanings in
Layers 1 and 3.

 Role confusion – systems engineers perform different functions in the
different phases of the different layers of the HKMF.

 Traceability of requirements – requirements on a system in Layer 1 can
be traced back to the socio-economic situation in Layer 5.

Chapter 12 A framework for a SEBoK

165

12.4 Summary
The advantages of using the HKMF for assembling the SEBoK include:
 Provides a Rosetta stone for communications between different systems

engineers. This should avoid the need to continually redefine terminol-
ogy.

 Provides visibility into what systems engineers actually do.
 Identifies differences in methodologies and tools between hard and soft

systems activities.
 Identifies skills and hence training needed at each layer.

Chapter 13 The Cataract Methodology

167

13The	cataract	methodology	for	
systems	and	software	acquisition

This Chapter views the organisation from the process perspective and dis-
cusses in detail the Cataract Methodology for systems and software acquisi-
tion (Denzler and Kasser, 1995). The goal of the Cataract Methodology is to
achieve convergence between the customer’s needs and the operational
system as depicted in Figure 5-3. The Cataract Methodology:
 Is based on the recognition that the “Build” approach used in the opera-

tions and maintenance phase of the SLC for software maintenance is al-
so applicable to the initial development phase of the SDLC.

 Has been constructed out of components in existing methodologies,
each of which have been shown to be effective.

 Extends the spiral approach by emphasizing the criticality of Configura-
tion Management and the type of information needed to control system
and software development in an integrated engineering and manage-
ment environment.

 With its focus on configuration and knowledge management can pro-
duce systems that converge with the needs of the customer with fewer
cost and schedule escalations and project failures provided appropriate
knowledge management and configuration tools are used.

 With its short iterative lifecycle is well suited for agile systems develop-
ment.

The current systems and software acquisition paradigm is characterized
by project failures and cost and schedule overruns. Data from the USA
(CHAOS, 1995) and the UK (OASIG, 1996) show that the problem is an inter-
national one. Conventional wisdom states that the Waterfall approach does
not cope well with changing requirements. Thus efforts to overcome the
problem have reacted to the effects of poorly articulated and changing user
requirements during the development process and have focused on chang-
ing the production process from the waterfall approach to some type of rap-
id, spiral, or other methodology, with some improvement. Now, from an
information systems and Knowledge Management perspective these acquisi-

2002

Chapter 13 The Cataract Methodology

168

tion programs do not fail because the requirements change, they fail be-
cause of poor requirements management, namely the failure to manage the
changing requirements. This Chapter analyses the system and software
methodology, provides some insight into the nature of the process generally
thought of as being represented by Figure 5-1. The customer has a need
that is documented in a SOW and a contract is awarded for development of
a product or system that meets the need. The contractor then develops the
product over some period of time. There are a number of milestone reviews
along the production process to attempt to verify that the development con-
tractor is producing the correct system.

Figure 13-1 The Waterfall methodology

The Waterfall methodology (Royce, 1970) shown in Figure 13-1 was
among the first attempts to document the software production process. It
represented the process as a serial sequence of events.

The requirements analysis phase is the phase in which the user needs
and constraints are determined. The user’s needs are then translated into
system requirements, which these days are stored in the database of a Re-
quirements Management tool. The process of accepting the initial set of
requirements may be represented as shown in Figure 8-2. Each requirement
must be considered as a request until accepted and is allocated an identifica-
tion number. The requirement must be assessed for priority, and cost and
schedule impact, as well as for risks. However, during the pre-System Re-
quirements Review (SRR) period, some of these assessments are currently
generally not performed. The initial requirements must be considered as
not being firm until all the initial system requirements have been document-
ed. During this process the customer and developer must resolve conflicts in
the requirements. At that time, the process of gathering the initial set of

Chapter 13 The Cataract Methodology

169

requirements generally terminates with the SRR in which both customer and
development contractor accept the requirements and the requirements are
frozen (no further changes allowed). The customer agrees that the require-
ments represent the needs, and the development contractor agrees to pro-
duce a system that meets the requirements.

The next phase in the waterfall methodology is the design phase, which
follows once the requirements have been accepted. It is the phase in which
modules of the system are designed to meet the requirements. The imple-
mentation phase in which the system is constructed then follows. Once the
system is constructed it is formally tested and finally delivered to the cus-
tomer for use.

Milestone reviews take place between the phases to confirm that the
work allocated to a specific phase is complete and the process is ready to
advance to the next phase. The name of the methodology was adopted be-
cause the pictorial representation shows each phase seeming to flow natu-
rally into the next phase like water flowing over a series of falls.

The Waterfall process is ideal when the vision of the product exists (all
requirements are known) at the time that the contract is awarded, and the
contractor just builds it. However, in the real world the situation is different
as shown in Figure 5-2. During the time that the contractor advances to-
wards the vision of the product that existed at the time the contract was
awarded, the vision itself changes. In other words, the target is moving.
Thus, while the delivered system may meet its original requirements, the
system will not meet the “new” requirements in effect at the time of deliv-
ery. The target moves for various reasons including:

 The customer requirements change over time for various reasons.
 The customer has non-articulated requirements at the start of the pro-

cess and manages to articulate them as time passes.
 Externally driven changes such as changes in government regulations,

changes in the marketplace, changes in technology, and changes in oth-
er systems that interface with the system.

This situation leads to poorly controlled construction as represented by
the chaotic waterfall model shown in Figure 13-2. The figure also shows that
the cost to make changes grows the further down the waterfall the changes
are made. While the Spiral model (Boehm, 1988) emphasizes risk manage-
ment, and facilitates the articulation of requirements, it does not emphasize
configuration control. If the spiral model is opened up, it can be seen to be a
waterfall. Thus while the Spiral model provides some improvement over the
waterfall model, lack of configuration control tends to result in moving base-
lines, chaos and confusion, which lead to cost escalation and schedule de-
lays.

Chapter 13 The Cataract Methodology

170

Figure 13-2 The chaotic view of the waterfall

13.1 Budget tolerant Build planning
The initial design is frozen, baselined and presented at a Preliminary Design
Review (PDR). In the budget tolerant approach, this particular review differs
from the traditional PDR in that lifecycle cost estimates and requirements
priorities are included in the design trade studies using the appropriate ele-
ments of the QSE (Chapter 8). A detailed design-to-cost development is then
initiated, where the highest priority requirements are selected for inclusion
in the early Builds until the sum of their costs to implement is within the
appropriate margin of the total allowed cost. In this design exercise, the
 Cost of all selected requirements is computed for the entire lifecycle of

the system.
 The most necessary requirements are those selected for implementa-

tion.
 Builds are organized so that the most critical requirements are imple-

mented first.

Once we start building the system, change management becomes more
complicated because the impact of a change can impact portions already
built, as well as cause redesign of yet-to-be-implemented requirements.
When a change request is made, the systems engineer performs an impact
assessment as described in Section 8.1. The priorities of the requirements
and the major cost drivers are known being stored in the QSE also described
in Chapter 8, so change management means making informed decisions
about the following two types of changes:

 Budgetary changes.
 Requirements changes.

Chapter 13 The Cataract Methodology

171

13.1.1 Budgetary changes

In today’s systems engineering environment, budgets are decreasing while
needs are remaining constant or even increasing. Budget changes lead to
changes in performance and vice versa. These factors are two sides of the
same coin, yet this very simple linkage does not seem to have been made to
date. As a matter of fact, the traditional development philosophy tends to
keep the cost information isolated from the people who set requirements.
One purpose of systems engineering is risk mitigation, yet mitigating the
risks introduced by a budget decrease tends to be ignored in the SDLC.

The effect of a budget decrease is change. Some functionality will have
to be given up, i.e., requirements will have to be deleted. The change may
take two forms:

 cut a certain amount of money from the program, which directly affects
the system engineering process within the organization with ramifica-
tions on the staffing and schedule, and

 cut some requirements from the system under development, which has
a direct impact on the product and an indirect impact on staffing and
schedule.

The way to deal with budgetary changes is to identify the lowest priority
requirements. Assess the impact of deleting them. Sometimes work already
completed may change absolute costs. Then delete the lowest priority re-
quirement(s) consistent with the budget reduction from future Builds. The
low priority requirements should have been assigned to the later Builds to
facilitate this.

13.1.2 Requirements changes

The real world of continuously changing requirements is recognized by the
statement that the goal of system engineering is to provide a system that
(Kasser, 2000c):
 Meets the customer’s requirements as stated when the project starts.
 Meets the customer’s requirements, as they exist when the project is

delivered.
 Is flexible enough to allow cost effective modifications to be imple-

mented as the customer’s requirements continue to evolve during the
operations and maintenance phase of the system lifecycle.

This is of course impossible with today’s technology. However, in many
projects it may be possible to come close and achieve a large degree of con-
vergence between the requirements and the capability of the system. The
major lesson learned seems to be not to identify all the requirements at the
start of the project, but to identify the (Kasser, 2000c):

Chapter 13 The Cataract Methodology

172

 Highest priority requirements - The show stoppers. The risk here is the
failure to identify the critical requirements and the failure to set the pri-
ority correctly.

 Real requirements - As opposed to apparent requirements.

Since the requirements change over time, there is a need for Build plan-
ning. The system must be built in such a manner that the requirements are
implemented in the order of their priority (Denzler and Kasser, 1995). The
design path takes one from the domain of where everything is possible to
what is actually possible. Thus:

 Detailed design decisions should be made on a JIT basis (Kasser,
2000c). There is no need to complete the design before starting a Build.
However, the design must be feasible. The risk here is in determining
the feasibility of the design. For example, in a case where the need is
for synchronous voice communications between two places. Since an
initial assessment shows that the need can be met using the conven-
tional telephone service or by the use of voice over the Internet, there is
no need to make that decision early in the design cycle. The characteris-
tics of the telephone link are known. The characteristics of Internet
voice links are also known. Experiments can take place and the actual
decision made just in time to implement the communications links.
Since there is a possibility that the requirement for synchronous com-
munications may be deleted in the future, any design effort made earli-
er would be wasted if the requirement were eliminated. In addition, if
the requirement is not eliminated, then advantages can be taken of im-
provement in technology and/or cost reductions over the time before
the decision has to be made.

 Design decisions must also maximize the “don’t cares” as well. The
example here is Internet voice works (risk minimal) but the actual choice
of how to implement the communications subsystem can wait for a
while. A better example is from the LuZ SEGS-1 sun sensor glue case
(Chapter 11). If the requirement had been placed on the process, not to
allow glue on the face of the diode, the characteristics of the glue under
the high temperature conditions would not have mattered and the ex-
pensive sun-sensor replacements would have been avoided.

Thus the key to an effective SDLC is to manage change in a manner that
achieves convergence between the needs of the user and the capability of
the as-built system in a cost-effective manner as shown in Figure 5-3. The
way to achieve this goal seems to be not to attempt identify all the require-
ments at the start of the project, but to only identify the highest priority and
the riskiest-to-implement requirements. Then to achieve convergence by
fleshing out the requirements in a controlled manner and delaying design
decisions using a JIT approach (Kasser, 2000c) in the Cataract Methodology.

Chapter 13 The Cataract Methodology

173

13.2 The Cataract methodology
The Cataract Methodology relies on two factors:
 The waterfall methodology works very well over a short period of time.
 Implementation and delivery of systems and software are often per-

formed in partial deliveries, commonly called “Builds” in which each
successive Build provides additional capabilities.

Build planning is not a new concept. It has been used in software
maintenance for many years. It was also incorporated in the UK Defence
Evaluation and Research Agency (DERA) Reference Model (DERA, 1997)
shown in Figure 13-3.

Figure 13-3 DERA evolutionary lifecycle (DERA, 1997)

In the software world, a Build means a defined software configuration.
Successive Builds enhance the capability of the software. In the hardware
world, Builds can comprise subsystems, or the integration of two or more
subsystems. The work associated with each Build takes place in the three
parallel streams of activities shown in Figure 2-2 and is organised such that:

 Systems engineering performs requirements and interface engineering,
change assessment, risk management, allocates the system level re-
quirements between the hardware and software components, coordi-
nates technical performance analysis and measurement, and produces
the process-products (documentation).

 Software engineering turns the software requirements into software
code, and evaluates and perhaps incorporates COTS software.

Chapter 13 The Cataract Methodology

174

 Hardware engineering may be working with the computers, work-
stations, disk drives or other storage elements, networks, and custom
hardware elements.

 T&E develops test plans and procedures, then performs the tests and
reports on the results.

 System Integration integrates the hardware and software units and
verifies their working together.

 Final testing in which the integrated Build is tested prior to acceptance
by the customer.

 Transition is the time in which the Build is turned over to the customer
or user.

 Operations and maintenance is the time span when the Build is operat-
ed by the customer, or by the maintenance contractor.

 Management is the planning, organizing, directing, and controlling the
technical and administrative work. This includes making sure that the
needed resources are available at the appropriate time.

The cataract approach to Build Planning may be likened to a Rapid Pro-
totyping scenario within the spiral in which the requirements for each Build
are frozen at the start of the Build. This approach, however, is more than
just grouping requirements in some logical sequence and charging ahead.
Build plans must be optimised on the product, process, and organization axis
to:

 Implement the highest priority requirements in the earlier Builds. Then,
if budget cuts occur during the implementation phase, the lower priority
portions are the ones that can readily be eliminated because they were
planned to be implemented last.

 Make use of the insight that, typically, 20 percent of the application will
deliver 80 percent of the capability (Arthur, 1992) by providing that 20
percent in the early Builds.

 Allow the waterfall approach to be used for each Build. This tried-and-
true approach works on a small project over a short timeframe.

 Produce a Build with some degree of functionality that if appropriate
can also be used by the customer in a productive manner. For example,
the first Build should generally, at a minimum, provide the user inter-
face and shell to the remainder of the functions. This follows the rule of
designing the system in a structured manner and performing a piece-
meal implementation.

 Allow a factor for the element of change.
 Optimise the amount of functionality in a Build (features versus devel-

opment time).
 Minimize the cost of producing the Build.

Chapter 13 The Cataract Methodology

175

 Level the number of personnel available to implement the Build (devel-
opment, test, and systems engineers) over the SDLC to minimize staffing
problems during the SDLC.

13.2.1 Build zero

Once the initial set of requirements has been signed off, the system architec-
ture designed, and the implementation allocated into a series of Builds, the
implementation phase embodying the cataracts begins. The Cataract meth-
odology incorporates an initial Build, Build Zero, which contains the same
initial two phases, requirements and design, of the Waterfall methodology
with the exception that there is recognition that
 All the requirements are not finalized at SRR.
 Additional requirements will become known as the project progresses.
 Design and implementation decisions will be deferred so as to maximize

the “don’t care” situations and made in a JIT manner (Section 13.1.2).

The work in Build Zero is to:

1. Identify the highest priority requirements.
2. Baseline an initial set of user needs and corresponding system re-

quirements.
3. Develop the FREDIE database incorporating the QSE for each of the

baselined requirements (Chapter 8.3). The FREDIE provides the da-
ta necessary for making informed decisions about accepting the ini-
tial set of requirements and subsequent changes.

4. Complete the first draft of the SEMP and OCD (Kasser and
Schermerhorn, 1994b).

5. Design the Architecture Framework for the system. According to
the DERA Reference Model, “typically, architectural design involves
identifying and exploring several design options at a level of detail
consistent with the technical and commercial risks. The options
evaluate the performance and attributes of alternative architectural
structures. Based on an appropriate level of understanding of can-
didate components, the feasibility of particular architectures or ar-
chitectural variants is confirmed and their performance assessed.
The trade-off analysis leads to a preferred architecture solution and
to confirmation of the requirements for the subsystems/component
functions and interfaces necessary to effect that architecture”
(DERA, 1997).

6. Perform risk assessment to determine the proposed Architecture
Framework can meet all of the highest priority requirements.

7. Document the assumptions driving the Architecture Framework and
a representation of operational scenarios (Use Cases) that the Ar-
chitecture Framework prohibits. This activity also helps identify

Chapter 13 The Cataract Methodology

176

missing and non-articulated requirements early in the SDLC. The
design of the Architecture Framework for the entire system in Build
Zero introduces a risk that it may not be suitable for changes years
later in its operations and maintenance phase (or even earlier). This
is why part of the Build Zero effort is to determine scenarios for
which the system is not suitable. The customer is then aware of the
situation. The goal of the Cataract Methodology is to achieve con-
vergence between the customer’s needs and the operational sys-
tem. In the course of time, one can expect that the need will
change to something for which the system cannot provide capabil-
ity. At that time, a revolutionary Build will be needed to replace the
system. However, it will be done with full knowledge in a planned
manner, rather than the ad-hoc manner of today’s environment.

8. Develop the WBS to level the workload across the future Builds and
implement the highest priority requirements in the earlier Builds as
described above.

9. From Build One inclusive, each subsequent Build is a waterfall in it-
self. The requirements for the Build are first frozen at the Build
SRR. Then the design effort begins. Once the design is over, the
Build is implemented and when completed turned over for integra-
tion. While the design team does assist with the integration, their
main effort is to start to work on the design of the next Build. Once
the first Build has been built and is working, the requirements
freeze, design - integrate - test - transition and operate stages of
the SLC commences for the second Build. This cycle will continue
through subsequent Builds until the system is decommissioned alt-
hough the contract may change from the development organization
to the maintenance organization. Each Build is an identical process
but time delayed with respect to the previous one. Each successive
Build provides additional capabilities. When the Builds are placed
under configuration control, the Waterfall may initially be drawn as
shown in Figure 13-4 however this figure is misleading. Externally
driven changes are requested and problems tend to show up during
the integration and test phases. When a problem is noticed, a dis-
crepancy report (DR) is issued against the symptom. This DR is ana-
lysed and the cause identified. A change request is then issued by
the CCB to resolve the defect either in the current Build before de-
livery, or by assigning it to be fixed in a subsequent Build. Thus Fig-
ure 13-4 should be replaced with Figure 13-5 showing that the Cata-
ract methodology explicitly adds:

Chapter 13 The Cataract Methodology

177

Figure 13-4 Configuration control view of Waterfall

Figure 13-5 The cataract methodology

 the effect of changing external requirements, and
 the management of changing requirements

to the DERA Evolutionary Lifecycle approach Figure 24 (DERA, 1997) shown
in Figure 13-3. The change request, if accepted, is assigned to be imple-
mented in the appropriate future Build in the view shown in Figure 8-1.
Think of each Build as being completed a little behind the arrowhead of the
advancing requirements. From this perspective, the gap between the user’s
need and the completed section of the system converges over time as
shown in Figure 5-3.

Chapter 13 The Cataract Methodology

178

Project personnel move from one Build to the next; the development
team moves from one Build to the next, as does the testing team. Ideally
the Builds are sequential with no wasted time between them. The custom-
ers tend to get increasingly involved with the system during later Builds by
virtue of being able to use early Builds.

Each Build is placed under configuration control and may be delivered to
the customer. Accepted change requests modify the requirements for fu-
ture Builds, with the sole exception of “stop work” orders for Builds-in-
progress if the change is to remove major (expensive to implement) re-
quirements being implemented in a Build-in-progress. The milestone re-
views within a Build are identical to those in the Waterfall methodology,
since the Build is implemented using a Waterfall. All change requests re-
ceived during any Build are processed and if accepted are allocated to sub-
sequent Builds. Freezing of the requirements for each Build at the Build SRR
means that when the Build is delivered it is a representation of the custom-
er’s needs at the time of the Build SRR. It may not meet the needs of the
customer at the time of delivery, but the gap should be small depending on
the time taken to implement the Build since the SRR, thus achieving conver-
gence between the needs of the customer and the capability of the as-
delivered system.

13.3 Contractual boundaries
The insight presented herein is that as soon as the first Build in the devel-
opment process has begun, the development process and the maintenance
process are identical. The requirements freeze, design - integrate - test -
transition and operate stages of the SLC commences with the second Build
and the cycle will continue through subsequent Builds until the system is
decommissioned although the contract may change from the development
organization to the maintenance organization. If this is represented in Fig-
ure 13-6 it can be seen that the Turnover point between the development
contractor and the operations and maintenance (O&M) contractor is an ar-
tefact of the boundaries between the contracts awarded by the acquisition
organisation. This is because:

1. The effect of change is not generally considered to be in the domain
of the development contractor even though the customer’s needs
are changing during the development time.

2. The work performed by the O&M contractor is to implement re-
quested changes, upgrade the performance, and sustain the system
as well as fix defects.

Chapter 13 The Cataract Methodology

179

Figure 13-6 The Build cycle view of the SLC

13.4 Changes
The effects of the changes will show up as a variance in the cost and sched-
ule because the impact of a change affects requirements, documents, the
WBS, Builds, deliveries, and cost and schedule, depending on the point in the
SDLC in which the change occurred. Effects that will be noticed include:

1. Changes in high-level requirements will affect lower level require-
ments and may affect implementation requirements.

2. Documents affected could include management plans, operations
concepts, manuals, test plans, and procedures.

3. WBS elements which contain not include all SDLC activities. All
SDLC activities need to be in the WBS.

4. For Builds and deliveries, the implementation sequence may be
changed to the point where a Build no longer adds any value to the
system, so the cost of testing, releasing, and delivering the Build
may no longer be economical.

Donaldson and Siegel state that there are two types of changes during
the SDLC namely planned and unplanned (Donaldson and Siegel, 1997). The
implementation of each type begins with a change request.

13.4.1 Change requests

The process for dealing with both types of change is the same and begins
with a change request. The change requests are processed via the CCB
(Chapter 8). Requests for planned changes tend to be processed well before

Chapter 13 The Cataract Methodology

180

the change is to be implemented. Requests for unplanned changes howev-
er, need to be categorised by priority. Typical categories may be “routine”,
“urgent”, or “do by yesterday” or their equivalents. A typical “do by yester-
day” change request is the result of an analysis of a DR reporting that the
system crashes.

13.4.2 The generic process for handling a change request

The change request process is the same as the process for accepting the ini-
tial set of requirements at the start of the SDLC shown in Figure 8-2. A typi-
cal impact of a requested change on the product and process (Builds) shown
in Figure 13-7 is assessed and a decision made as to whether to accept or
reject the request. The Figure shows the WBS elements arranged as a pro-
cess flow. This is valid since in the requirements-based paradigm all work is
represented in the WBS.

Figure 13-7 The typical impact of a change request on WBS elements

13.5 The configuration control process
Conventional configuration control tends to be limited to products that are
either in process of construction or have been completed. However, the key
to effective control of the production process is effective configuration con-
trol and informed decisions about the impact of any change request on both
the product (cost and capability) and the process (cost and schedule). Thus
the impact of the requested change on the process as represented by the
Build Plan and WBS also needs to be assessed as well as the impact on the
functionality or capability of the product under development.

Chapter 13 The Cataract Methodology

181

13.5.1 Impact Assessments

The purpose of the impact assessment must be to determine the cost, feasi-
bility and risk of each requested change to both the product and process.
The elements of the impact assessment of a change request61 are the:

1. Determination if the request has been rejected before and if those
reasons are still applicable.

2. Determination if the request has been accepted but not yet imple-
mented.

3. Determination if a conflict or contradiction exists with other re-
quirements and if so, resolve it.

4. Determination if the requirement/change is really needed.
5. Determination of the change in the total project risk on the sched-

ule.
6. Determination if the change is feasible.
7. Estimation of the cost to implement the requirement/change.
8. Determination of the cost drivers for the change in the design.
9. Performing sensitivity analyses on the cost drivers. The results of a

typical sensitivity analysis are shown in Figure 13-8.

Figure 13-8 Typical sensitivity analysis graph

10. Discussing the cost drivers for the results of the sensitivity analysis
with the customer and determining if the cost drivers are really
necessary. For example, in a given system, the requirement was for
a communications bandwidth of 900 units. If the requirement had
been accepted without the analysis, the cost to implement would

61 Compare these to those for a new requirement discussed in Section 8.1.

Chapter 13 The Cataract Methodology

182

have been estimated as 100 units of money. However, when pre-
sented with the graph shown in Figure 13-8, the customer was able
to state that the bandwidth requirement of 900 had been based on
building in excess capability on the real need for a bandwidth of
450. Thus lowering the bandwidth requirement to 800 would still
provide more than the needed capability and reduce estimated cost
by about 95%.

11. Documenting the decisions in the system requirement repository.

13.5.2 Typical impact assessment questions

Typical impact assessment questions that may be used to guide the assess-
ment are:
 Why do we need the change?
 What if we don’t accept it?
 What are the alternatives?
 What will the modified system do?
 How will the change contribute to mission objectives?
 How will the change impact existing and planned adjacent systems?
 What are the risks and their probability of occurrence?
 How easily can those risks be mitigated?
 What are the required resources required for implementing the change?
 How long will it take to implement the change?

13.5.3 The analysis of the change request

The CCB will assign incoming change requests to an Integrated Product Pro-
cess Team (IPPT). The IPPT will analyse the change and perform the impact
assessment to the appropriate depth to minimise risks. The analysis phase
of the impact assessment can be considered as the traditional design phase
of the SLC. If the change request is considered as a requirement request,
then the process of meeting the requirement is the design of alternative
solutions and the choice of the optimal solution, namely the analysis and
synthesis functions of the SDLC. The analysis is a problem solving and fixing
exercise as illustrated in the feedback loop shown in Figure 13-9.

The problem is examined and analysed which results in one or more so-
lutions being proposed. If the root cause of the problem is not found, a solu-
tion may not work or may only work for a short period of time. In addition,
even if the implemented solution works it may introduce further problems
that only show up after some period of time. Consider the implications of
the time delay in the problem solving feedback loop. Any action has an ef-
fect in the present and in the future. Group these effects in time as:

Chapter 13 The Cataract Methodology

183

Figure 13-9 Problem solving feedback loop

 First order - noticeable effect within a second or less.
 Second order - noticeable effect within a minute or less.
 Third order - noticeable effect within an hour or less.
 Fourth order - noticeable effect within a day or less.
 Fifth order - noticeable effect within a week or less.
 Sixth order - noticeable effect within a month or less.
 Seventh order - noticeable effect within a year or less.
 Eighth order - noticeable effect within a decade or less.
 Ninth order - noticeable effect within a century or less.
 Tenth order – noticeable effect after a century or more.
 And so on into the millennia.

The analysis of the requested change has to consider all of the above as
applicable. While the higher order effects may not be applicable in a com-
puter-based system, they are applicable in long-lived systems such as those
that affect the environment (Dams, power plants, etc.).

13.6 The Decision
When the impact analysis is complete, the customer’s project manager
makes the final decision on the effect of a change based on their willingness
to pay. Two factors affect the decision, namely the recommendations of the
IPPT (based on the result of the analysis) on the impact of the requested
change on the cost, schedule and risk, and the willingness of the customer to
accept the impact.

Chapter 13 The Cataract Methodology

184

13.7 The suite of tools for configuration control
The suite of tools needed for configuration control in the Anticipatory Test-
ing environment are a combination of several existing different and usually
unconnected tools (e.g. Requirements Management, Project Management,
WBS, Configuration Control, and Cost Estimation, etc.), used in today’s man-
agement and engineering work streams of the SLC. In addition the tools
must also provide the capability to perform:
 impact assessments of the effects of proposed changes before imple-

mentation,
 trade studies to compare the costs, risks, and capabilities of alternative

designs.

13.8 The Configuration Control Board
The CCB controls change. The acronym can also mean Change Control
Board. The CCB must control all changes in the SDLC, those affecting both
the process and the product. Thus project management must be a function
of the CCB something that is not typically done in the current project man-
agement paradigm. The elements of a typical CCB organisation are shown in
Figure 13-10. Note that the project manager may be within the contractor
or customer organisation depending on the time and place.

Figure 13-10 Elements of a typical CCB

13.8.1 CCB composition

The customer may have a single representative or several, representing the
user and stakeholders on the CCB. In government acquisitions or mainte-

Chapter 13 The Cataract Methodology

185

nance contracts the customer representative on the CCB should be the Con-
tracting Officer’s Technical Representative (COTR). The COTR knows the
total contract budget and feeds the needs of the users and stakeholders to
the CCB. The contractor can estimate the risk, cost and schedule impacts.
The project manager then makes the decisions within the scope of the con-
tract.

13.8.2 CCB decisions

All changes affect the cost of production. The factors that the CCB considers
in making the decisions (accept or reject the change request) are different
depending on the type of contract. In a cost-plus arrangement, the costs will
be passed on to the customer in the form of additional or reduced costs de-
pending on the nature of the change. In a firm fixed price (or design to cost)
contract, if a requested change adds cost, then either the contractor will
absorb the cost, the price will be increased, or some functionality will have
to be removed to keep the costs fixed. This will probably be a lower priority
requirement than the one being changed. In this situation, the CCB must ask
the customer to decide which requirement to remove. This situation is one
of the reasons for the “priority” element in the QSE.

13.9 Improving the CCB
The CCB for a single project may be improved in several ways including the
following:
 Adding T&E capability
 The customer single point interface

13.9.1 Adding test and evaluation capability

In many instances in government contracts, the government employs a sep-
arate contractor to perform the T&E or IV&V of the development contrac-
tor’s work. A more effective CCB is shown in Figure 13-11. Bringing the T&E
representative onto the CCB at the start of the project means that:
 The effect on the change on the T&E process will be part of the impact

assessment.
 T&E (or IV&V) are brought into the project at the start, unlike in most of

the current situations when they are brought in only after the defects
have been designed into the system. This difference, in itself, is a major
lifecycle cost-reducing element, by allowing interdependent in-process
testing and early detection of defects, i.e., the Anticipatory Testing con-
cept.

Chapter 13 The Cataract Methodology

186

Figure 13-11 A more effective CCB

13.9.2 The customer single point interface

Figure 13-11 shows the COTR as a single interface to the customer. The con-
tractor thus has only one customer to satisfy so there is a clean interface.
This does not mean that the users and stakeholders do not need to be satis-
fied. The task of satisfying them remains wholly within the customer’s or-
ganisation. This organisation structure provides only one person with the
authority to authorise changes. Users and stakeholders however may still be
present in the CCB as part of the IPPT.

13.10 Lifecycle implications
Consider the implications on the lifecycle.

13.10.1 The recursive lifecycle

The change request process is the same as the process for accepting the ini-
tial set of requirements at the start of the SDLC shown in Figure 8-2. Thus
the only difference between a requirement at the start-up phase and a
change sometime later in the entire system lifecycle (SLC) is that a start-up is
a transition from no system to some system, while a change is a transition
from some system configuration to a different system configuration. Thus
from this perspective the traditional design process is the impact assessment
of the cost, schedule and risk of meeting the customer’s need of a number of
designs and the choice of the optimal design to meet the initial set of re-
quirements. As such, the lifecycle phases of the SLC are recursive. For ex-
ample the feasibility analysis performed at the start of the SLC is functionally
identical to the design processes later on, the difference being in the amount

Chapter 13 The Cataract Methodology

187

of information available at the time, the depth of the analysis, and the ter-
minology used.

13.10.2 The type and place of the IPPT in the SLC

There are two types of IPPT in the SLC, permanent and temporary. Each
contains the appropriate knowledge and skills necessary to complete its as-
signments. There are also two places for an IPPT in the SLC. The CCB is
permanent IPPT and the impact assessments of change requests are per-
formed by temporary IPPTs.

13.11 The cataract perspective
From the cataract perspective:
 Successive Builds do not have to be incremental or evolutionary, they

can also be revolutionary, i.e. an entire replacement system can be fac-
tored into the schedule. Thus legacy systems can be upgraded and re-
placed with minimal waste of resources using the Cataract Methodolo-
gy. By knowing when parts of the system will be replaced (in which
Builds), informed decisions can be made as to which defects to fix,
which modifications to make to the current system and which modifica-
tions to defer to the replacement system.

 The traditional concept of developing the functionality of a system by
making one change at a time uses the waterfall approach via a sequen-
tial series of waterfalls, namely cataracts.

 The Year 2000 issue was just a DR and changes made as a result of the
analysis of the problem.

 Effective configuration control and information about the state of the
project is vital.

The Cataract methodology depends on a new generation of tools and in-
formation displays such as the QSE, FREDIE, and CRIP Charts. The Cataract
Methodology is an integrated product-process (engineering and manage-
ment) methodology that can be used to control costs and schedules and
minimize project failures.

13.12 Summary
By viewing the SDLC from the perspective of Builds it can be seen that
 The SDLC is a time-ordered series of tasks. In addition, since the devel-

opment contractor may be working on more than one Build at a time,
each Build being in a different part of its SDLC, the total SDLC is also a
parallel process with phase-delayed elements similar to the representa-
tion in Figure 11-2.

Chapter 13 The Cataract Methodology

188

 Except for Build Zero, the type of work performed in the SDLC, namely
up to the time the development contractor turns the system over to the
customer (and the maintenance contractor) is identical to the work per-
formed during the O&M phases of the SLC.

13.13 Conclusion
Both the SDLC and the SLC are multi-phased, time-ordered, parallel-
processing tasks. The Cataract Methodology with its focus on configuration
and knowledge management can produce systems that converge with the
needs of the customer with fewer cost and schedule escalations and project
failures provided appropriate knowledge management and configuration
tools are used.

Chapter 14 Managing systems of systems

189

14Managing	Systems	of	Systems

This Chapter provides an alternative perspective to much of the research
effort being expended in an effort to develop new concepts that can be used
to solve the problem of managing Systems of Systems. This Chapter views
the product and process from the alternative perspectives shown in Figure
1-3 and shows that from an information and knowledge management per-
spective the SLC for a single system is a multi-phased time-ordered parallel-
processing recursive paradigm that is little different from the uncoordinated
ad-hoc evolution of what has been defined as a System of Systems. Hence,
after providing the necessary coordination, information and knowledge
management based tools and techniques may be used to control the SLC of
each of the individual systems in the System of Systems as well as the Sys-
tem of Systems itself.

14.1 Introduction
The term System of Systems in its permanent sense (Cook, 2001) has come
to mean a set of interdependent systems evolving at different rates, each at
a different phase of their individual SLCs. Controlling the evolution of a Sys-
tem of Systems is deemed to be a complex problem since the development
and acquisition paradigm for even a single system is characterised by cost
and schedule overruns, and project failures (Chapter 3 and 6). Thus much
research effort is being expended in an effort to develop new concepts that
can be used to solve the problem of managing Systems of Systems. This
Chapter shows that the problem is not as complex as it appears, and is solv-
able at relatively low cost, if viewed from a different perspective.

14.2 One System
Consider one new system within the System of Systems. The SDLC can be
represented by Figure 14-1, which shows a sequential process producing the
product. The system level requirements are the combination of the user’s
needs and external factors such as changes in technology, regulations, and

2002

Chapter 14 Managing systems of systems

190

other factors that affect the system. Since all systems being acquired inter-
act with adjacent systems, some of the external factors come from those
adjacent systems.

Figure 14-1 The static system acquisition

However in the real world changes take place throughout the SDLC as
well as during the operations and maintenance phase of the SLC as a result
of internal and external events. This situation may be represented as shown
in Figure 14-2.

Figure 14-2 The dynamic system acquisition

Chapter 14 Managing systems of systems

191

14.3 The external perspective
Consider the system within the context or framework of its adjacent systems
(Chapter 11). The context diagram is shown in Figure 11-1. The system has
an interface with several other systems but not necessarily all the systems in
the framework. The temporal perspective of the evolution of the same set
of systems within the framework is shown in Figure 11-2. Each horizontal
line represents an evolving system. The implementation and delivery of
such systems and software are often performed in partial deliveries, com-
monly called “Builds” in which each successive Build provides additional ca-
pability (Chapter 13). Thus the sequential blocks in Figure 11-2 represent
the operational phase of the different Builds within the individual system’s
SLC. The SDLC phases of the Build have been abstracted out to simplify the
figure. Lines begin when new systems are brought into existence, and ter-
minate when existing systems are decommissioned.

This is the almost the same representation as that for a System of Sys-
tems. The difference being that the System of Systems is evolving in an ad-
hoc uncontrolled manner. Thus controlling the acquisition of a System of
Systems is a matter of identifying the framework for the System of Systems
and then managing the evolution of every system in the framework making
optimised decisions for the framework as a whole. This is the standard sys-
tems engineering methodology for any set of subsystems in a single system.
So from this perspective, three problems need to be solved to solve the Sys-
tem of Systems problem, namely:

1. Develop a cost-effective SDLC for a single system that:

 can take into account the on-going changes in adjacent systems,
 meets the customer’s requirements as stated when the project

starts,
 meets the customer’s requirements as they exist when the project

is delivered, and
 Is flexible enough to allow cost effective modifications to be imple-

mented as the customer’s requirements continue to evolve during
the operations and maintenance phase of the system lifecycle (Sec-
tion 9.2).

2. Implement the links between the systems so that changes in the ad-
jacent systems are taken into account in the evolution of each of
the systems.

3. Provide the management information system to make optimal deci-
sions for each system and well as the System of Systems (Hitchins,
1998).

Chapter 14 Managing systems of systems

192

14.4 The cost-effective SDLC for a single system
The Cataract Methodology (Chapter 13) with its focus on configuration con-
trol and knowledge management can produce systems that converge with
the needs of the customer with fewer cost and schedule escalations and
project failures provided appropriate knowledge management and configu-
ration tools are used. Therefore if the Cataract Methodology is applied to
every individual system in the System of Systems and to the System of Sys-
tems as a whole:
 The SLC of each of the systems will be managed in a cost-effective man-

ner.
 The interface for links between the CCB of each and every system will

exist via the “external factors” input element.
 The evolution of the System of Systems as a whole will change from an

ad-hoc manner to a coordinated manner.

14.5 Another perspective on the system of systems
If Figure 8-1 is redrawn in the format of Figure 11-2 it will look like Figure
14-3. A combination of Figure 11-2 and Figure 14-3 is shown in Figure 14-4.
Each of the individual projects has its own CCB operating as (Chapter 13).
Figure 14-4 shows a Strategic CCB (SCCB) operating in a similar manner to
the CCBs for the individual systems. The SCCB interfaces to all the systems
within the System of Systems and also has an external interface.

Figure 14-3 System with CCB

14.5.1 The parallel system lifecycle

When Figure 11-2 and Figure 13-5 were combined into Figure 14-4, the
Builds were flattened into a series of rectangles and the CCBs brought out
and shown as a circle. As such this drawing can be applied to the develop-

Chapter 14 Managing systems of systems

193

ment of subsystems within any of the individual systems. All subsystems
might be developed in-phase in some of those cases. However, the normal
approach of completing one subsystem at a time and then integrating it to
the others is a multi-phased activity.

Figure 14-4 Controlled phased parallel evolution

The drawing may also be applied to the situation in which the System of
Systems of one organisation is added to several Systems of Systems of other
organisations. Thus from the perspective of this drawing, the entire SLC is
parallel and similar if not identical at any level but the lowest.

14.5.2 Mapping the architectural framework into the organization.

If Figure 14-4 is turned on its side, as in Figure 14-5, the traditional hierar-
chical organisational structure can be seen with the SCCB at the top. Thus
from this perspective the System of Systems can be seen to be the same as
the traditional system-subsystems configuration which can be mapped into
the framework of any organisation of projects. However, when a mapping is
made into an existing organisational framework, it will be seen that:
 The terminology used by the organisation and this Chapter will be dif-

ferent.
 The uncoordinated ad-hoc evolution of the System of Systems will be-

come apparent due to the broken, missing links and elements as shown
in Figure 14-6. In addition, extra links may become visible. For example,
in many organisations the SCCB may not exist and individual CCBs may
not have links to one or more external CCBs.

14.6 From the perspective of self-regulating systems
Consider the issue from another viewpoint. An organisation, project or even
an element in a sequential process is a system and may be represented as

Chapter 14 Managing systems of systems

194

shown in various ways such as Figure 1-1, Figure 1-3, Figure 4-1 and Figure
14-7. The system turns raw materials (inputs) into products generating
waste and profits (wanted and unwanted outputs). There is a control loop
which determines what is produced and when62, based on customer needs.
However, what is not usually pointed out is that the control loop embodies a
delay. Now consider two systems in series, they may be any sequential pro-
cesses, such as manufacturing and painting, or subsystem construction and
integration. The two subsystems, connected by the production process and
the control and status links, may be depicted as shown in Figure 14-8.

Figure 14-5 Traditional hierarchical organisation

Figure 14-6 Comparison between system of system and Meta-system
views

62 This control loop may be broken in some organisations as a result of poor man-
agement.

Chapter 14 Managing systems of systems

195

Figure 14-7 The organization as a system

Figure 14-8 Self-regulating systems

If the CCB control is added to the self-regulating subsystems, the ar-
rangement becomes as shown in Figure 14-9. If the drawing is then expand-
ed horizontally along the process dimension and vertically up the control
dimension, and the control elements combined to optimise the span of con-
trol, the result is the conventional hierarchical organisation structure or sys-
tem-subsystem chart close to that shown in Figure 4-3, Figure 4-4 and Figure
14-5. The difference being in that in self-regulating systems, decisions are
made at the local system level and guidelines are passed down the hierarchy
and status information is passed up the hierarchy.

Thus from this perspective as well, if any links are broken, any current
individual system acquisition can be considered as part of an uncoordinated
ad-hoc evolution of the System of Systems of which it is a part.

Chapter 14 Managing systems of systems

196

Figure 14-9 Adding control to self-regulating systems

14.7 Gaining control of the system of systems
Since any current individual system acquisition can be considered as part of
an uncoordinated System of Systems lifecycle, gaining control of the Systems
of Systems is then a matter of:
 baselining the existing System of Systems within a framework for con-

trolled phased evolution as depicted in Figure 14-4,
 performing a gap-analysis to identify the missing elements,
 adding the missing elements to the framework,
 developing the appropriate management tools suitable for both the

individual CCBs and the SCCB,
 converting each individual system SLC to the Cataract Methodology,
 developing the transition plan, and
 implementing the plan using the Cataract Methodology.

The transition effort will probably be in converting to the Cataract
Methodology and establishing communications paths between the CCBs of
the individual systems and establishing the SCCB.

14.8 The suite of tools
The suite of tools needed to control changes are a combination of several
existing different and usually unconnected tools such as Requirements Man-
agement, Project Management, WBS, Configuration Control, and Cost Esti-
mation, used in the management and engineering paths of the SLC. The QSE
for each system and knowledge based tools should provide the capability for
a CCB to manage the acquisition of a single system in a cost-effective man-
ner. The recursiveness of the SLC means that the suite of tools should allow

Chapter 14 Managing systems of systems

197

the SCCB to manage the acquisition of the System of Systems in a cost-
effective manner. In addition the tools should also work within the IDE
(Chapter 3) to provide the capability to perform:
 Impact assessments of the effects of proposed changes before imple-

mentation.
 Trade studies on the costs and capabilities of alternative designs at the

System of Systems as well as at individual systems levels.

Additional research needs to be carried out into the tools required for
the SCCB as well as the degree of abstraction needed to avoid information
overload.

14.9 Summary
While managing System of Systems is a complicated problem in an industrial
age paradigm, when viewed from an information and knowledge manage-
ment paradigm, the problem is much less complicated. By integrating Con-
figuration Management across the process and product and using the Cata-
ract Methodology to manage each system within the System of Systems,
management of the System of Systems is achievable. However, the neces-
sary information age tools are still evolving out of the current generation of
project management, engineering and cost estimation tools.

Chapter 15 An alternative management paradigm

199

15Systems	engineering:	an	
alternative	management	paradigm?	

Previous Chapters have examined the organisation, the process it uses and
the product it builds. This Chapter looks at the organisation from the per-
spective of systems engineering and management continuing from Chapter
2. It examines role of systems engineering in the current management para-
digm, and revisits the difficulty of establishing a body of knowledge for sys-
tems engineering. The Chapter then resolves the difficulty by showing that
systems engineering is an alternative management paradigm to the 20th Cen-
tury Taylor paradigm based on adaptive modifications to “Scientific Man-
agement”63.

15.1 Introduction
We are living in an age of transitions. One of these is the transition from
hardware-based systems to software-based systems. While IT underpins the
civilization in the early years of the 21st Century, the current systems and
software acquisition and development paradigm is characterized by mind-
boggling complexity, a turbulent transition from function-based designs to
object-oriented designs, and cost and schedule overruns. One reason for
this state of affairs is that IT acquisition and development is currently per-
formed in an industrial age management paradigm based on adaptive modi-
fications to the work of F. W. Taylor who system engineered his manufac-
turing organization to develop the optimal process at the start of the 20th

Century. This paradigm is breaking down in the systems acquisitions, IT and
software development of the late 20th Century and early 21st Century.

63 F. W. Taylor system engineered his organization to split the work between man-
agement and labour. Management was supposed to plan and design the work, while
labour was to implement it in the predetermined one best way.

2002

Chapter 15 An alternative management paradigm

200

The process of the conversion of a set of vague, varying and changing
user needs into delivered systems and software via a process that can take
months or even years is the toughest challenge facing the IT profession in
these initial years of the 21st Century. People who can lead the implementa-
tion of the IT systems and software acquisition and development process
within the cost and schedule constraints are scarce. These people are be-
coming known as systems engineers and the approach they use is systems
engineering. Thus while the world is turning to systems engineering to solve
the problems of developing and maintaining the systems underpinning our
civilization, systems engineering:

 Is a vague term with many different interpretations. As such, many sys-
tems engineers cannot clearly articulate the functions and benefits of
systems engineering (Chapter 10).

 Covers a broad spectrum of activities (Chapter 12) and consequently, it
has been extremely difficult to establish a SEBoK; something that is criti-
cal to the future of systems engineering.

15.2 The Need for a SEBoK
The lack of a SEBoK (Chapter 12) is having a detrimental effect on systems
engineering as evidenced by:
 Poorly implemented systems engineering with consequent cost and

schedule escalations as well as unnecessary expenditures (Chapter 5).
Among the many examples of anecdotal evidence, including the systems
engineer with major responsibilities for a shipyard’s overseas Combat
Systems integration who had absolutely no idea of any of the recognized
systems engineering principles (Newland, 1998).

 The continual discussion of fundamental concepts without closure and
moving on to the application of the concepts to the real world. A typical
example is the discussion on poorly written requirements and their ef-
fects, which has not progressed much beyond (Hooks, 1993). The effect
of poorly written requirements on costs and schedules needs to be min-
imized not discussed!

 The continual discussion on the differences between systems engineer-
ing and project management. Most of these discussions focus on the
technical role of the engineers and the administration and organizing
role of the manager. The discussions conveniently ignore the fact that
the managers make the decisions and the systems engineers hold the
knowledge necessary for making an informed decision. One of the root
causes for the breakdown of the Taylor paradigm is that we are now
separating the knowledge holders from the decision-makers. The dis-
cussion and conflict should terminate with the realization that systems

Chapter 15 An alternative management paradigm

201

engineering and project management perform the same functions but in
different management paradigms.

 The rediscovery and reinvention of concepts long adopted in overlap-
ping disciplines. As an example, LaPlue et al. discussed the development
of a methodology for specifying requirements that describe the behav-
iour of a system and its interaction with its environment (LaPlue, et al.,
1995). In fact they reinvented the environmental and behavioural mod-
els of the Ward and Mellor software development methodology (Ward
and Mellor, 1985). This situation escalated project costs since the
methodology existed and could have been used rather than reinvented.

 The lack of an understanding of fundamental concepts, which is then
masked by the excuse that something cannot be done by conventional
approaches and a new and complex approach is needed with the re-
quirement for funding the research and the postponement of the deliv-
ered implementation.

 For example the term “System of Systems.” Real systems engineers
understand the hierarchical concept of meta-systems, systems and
sub-systems. And when you understand that concept, you can see
that the acquisition of what has become known as a “System of Sys-
tems” is just a matter of coordinating an uncoordinated ad-hoc
multi-phased time-ordered parallel-processing evolutionary process
(Chapter 13).

 The concept of cost as an independent variable (CAIV), which is a
way of complicating just a part of the concept of designing budget
tolerant systems using the Cataract approach (Chapter 13). Moreo-
ver, to repeat, excessive complexity is a symptom of an underlying
problem within the foundation of the current paradigm. Thus com-
plex solutions to any problem are always inherently less than opti-
mal and are the antithesis of the products of true systems engineer-
ing.

 Coining new words due to the lack of understanding that words and
concepts already exist. System of Systems was discussed above. How-
ever, to be fair, systems engineering is not alone in doing this. For ex-
ample software engineering has recently discovered the technique of
“abstracting” or hiding the insides of a component from the designers
who integrate the component with other components. Hardware and
systems engineers have long been familiar with the concept of a “black
box”.

15.3 Organization of the SEBoK
If systems engineering is an alternative management paradigm, then the

Chapter 15 An alternative management paradigm

202

SEBoK has to be extensive. Chapter 12 proposed that it needs
 Both depth and breadth at the same time.
 To overlap a number of engineering and management disciplines.

Chapter 12 also suggested that a suitable framework for organizing a
SEBoK could be based on the Hitchins five-layer model (Section 12.1.2). The
broadness of the five layers imply that systems engineers have to be cogni-
zant of what is being published in conferences and journals in several fields
including economics, requirements engineering, engineering management,
TQM, business, and software engineering as well as systems engineering.
The nature of the activities in each of the five layers is such that:

 Systems engineers operating in one layer use a different vocabulary to
those operating in another layer, hence, among other manifestations,
the multitude of definitions of systems engineering some of which were
quoted in Table 12-1.

 The SEBoK could contain almost the entire technical and managerial
bodies of knowledge.

15.4 Systems engineering as an alternative paradigm
The major roadblocks hindering the development of a comprehensive SEBoK
can be bypassed by the recognition that systems engineering is a different
way of doing things with respect to the current paradigm based on adaptive
modifications to Scientific Management (Taylor, 1911) namely an alternative
management paradigm. Consider systems engineering as a return to an old-
er management paradigm that was used for the construction of projects
such as the ancient pyramids, and the 19th Century canals and railroads.
Systems, which, within the scope of the tools and technology of their time,
presented problems that were just as complex as the problems we face to-
day. This older paradigm can be defined as “a set of activities which control
the overall design, development, implementation and integration of a com-
plex set of interacting components or systems to meet the needs of all the
users”. This sentence just happens to be a DERA definition of systems engi-
neering (DERA, 1997) quoted in Table 12-1.

Kuhn writes that an alternative paradigm is a reconstruction of the field
from new fundamentals, a reconstruction that changes some of the field’s
most elementary theoretical generalizations as well as many of its paradigm
methods and applications (Kuhn, 1970). The field under discussion in this
Chapter is “acquiring and delivering systems and software that meet the
changing needs of the user on time and within budget”. If systems engineer-
ing is a different management paradigm for this field, then to meet Kuhn’s
requirement for an alternative paradigm it has to

Chapter 15 An alternative management paradigm

203

 Resolve conflicts that cannot be readily resolved within the current par-
adigm.

 Incorporate management and other activities that are currently per-
formed by non-systems engineers who may be competing (or overlap-
ping) with systems engineers.

Systems engineering seems to do both. Some examples (in chronologi-
cal order of publication) are

 Eisner lists a general set of 28 tasks and activities that is normally per-
formed within the overall context of large-scale systems engineering
(Eisner, 1988). The full range of activities is commonly called ‘specialty
skills’ because some people spend their careers working in these spe-
cialties. Thus according to Eisner systems engineering overlaps at least
28 engineering specialties.

 The DSMC definition of systems engineering quoted in Table 12-1 is
“The management function which controls the total system develop-
ment effort for the purpose of achieving an optimum balance of all sys-
tem elements. It is a process which transforms an operational need into
a description of system parameters and integrates those parameters to
optimise the overall system effectiveness” (DSMC, 1996). Notice the
use of the term “management function”!

 As mentioned in Chapter 12, Lewis provides case studies in software
IV&V (Lewis, 1992). Yet the words “IV&V engineers” in those case stud-
ies could be replaced by the words “systems engineers” and the cases
would be just as appropriate in a book on systems engineering instead
of a book on IV&V.

 Deming laments the failure to manage the organization as a system
(Deming, 1993) page 30). He advocates replacing Management by [indi-
vidual component] objectives (MBO) by studying the theory of a system
and managing the components [setting the objectives] for optimisation
of the aim of the system. He further states, “We are living under the
tyranny of the prevailing style of management. Most people imagine
that this style of management has always existed, and is a fixture. Actu-
ally, it is a modern invention, a trap that has led us into decline”
(Deming, 1993) page 50).

 Deevy writes that management consulting has become a major growth
industry with American companies now spending over 7 Billion [dollars
US] each year on outside advice (Deevy, 1995) page 25). Thus Deevy
seems to imply that engineers are expected to know how to engineer,
physicians are expected to be competent practitioners of medicine, yet
the current management paradigm has reached the stage where it does
not expect managers to know how to manage!

Chapter 15 An alternative management paradigm

204

 Roe in discussing the role of the systems engineer and project manager
states that the knowledge and skills of system engineering are the same
as those of project management in the areas of management expertise,
technical breadth and technical depth (Roe, 1995). The difference in
application, according to Roe, is that the system engineer has more
technical breadth, while the project manager has more management
expertise. Roe concludes with “to perform effectively, the project man-
ager must be a system advocate. He must learn the multidisciplinary
approach and embrace the systems engineering methodology. The pro-
ject manager and the systems engineers share common objectives, i.e.,
to plan, design, and deliver a system that meets the customer’s needs.
Thus, they must avoid conflict and work cooperatively to attain the pro-
ject’s goals.”

 Roe also writes, “Integrated Product Development (IPD) is becoming a
fact of life for companies doing business with the government, and for
those who have found that it provides an edge in the modern global
market. Success stories abound. But it has not come easy to any organi-
zation. Each has found it necessary to make fundamental changes and
to convince upper management that the rewards of undergoing the cul-
tural shock of reengineering the organization will more than justify the
pain. Lessons have been learned and are still being learned and applied
to readjust the process. New management techniques, coupled with ag-
gressive application of systems engineering, will prove to be key ele-
ments of IPD” (Roe, 1995).

 Martin Cobb stated “We know why projects fail; we know how to pre-
vent their failure --so why do they still fail?” This statement has become
known as Cobb’s Paradox (Chapter 6).

 Sheard described twelve roles of the systems engineer that are occa-
sionally or frequently assumed to constitute the practice of systems en-
gineering (Sheard, 1996)64. According to her, some of the roles fit natu-
rally as [system development] lifecycle roles; others fit the program
management set of roles, while still others are not normally thought of
in either group.

 Chapter 2 analyses the functions performed by systems engineers and
shows that there seems to be no unique body of knowledge to systems
engineering. It states that all of the activity performed by systems engi-
neers, apart from possibly requirements and interfaces, are also per-
formed by other types of engineers.

 Watts and Mar write that systems engineering and project management
should be integrated (Watts and Mar, 1997). They state that in many

64 See Section 23.1.

Chapter 15 An alternative management paradigm

205

project environments, system engineering and project management are
managed separately. This situation is aggravated by the discipline seg-
regation by universities and by the corresponding professional organiza-
tions. As a result of this separateness, project managers futilely try to
manage cost and schedule without managing technical content while
the technical providers, ambivalent to the cost and schedule conse-
quences, pursue superior technical solutions.

 Eisner expands his earlier list (Eisner, 1988) and discusses 30 tasks that
form the central core of systems engineering (Eisner, 1997) page 156).
The whole area of systems engineering management is covered in just
one of the tasks. Eisner states that “not only must a Chief Systems Engi-
neer understand all 30 tasks; he or she must also understand the rela-
tionships between them, which is an enormously challenging undertak-
ing that requires both a broad and deep commitment to this discipline as
well as the supporting knowledge base”.

 Drucker wrote, “Full realisation of the systems concept in manufacturing
is years away. It may not require a new Henry Ford. But it will certainly
require very different management and very different managers”
(Drucker, 1993) page 315).

 Bottomly et al. studied the roles of the systems engineer and the project
manager and identified 185 activities and their competencies (experi-
ence and knowledge) (Bottomly, et al., 1998). Their findings included:

 No competency was assessed as being purely the province of sys-
tems engineering.

 There is no sharp division between the two disciplines (systems en-
gineer and the project manager) even at the level of individuals.

 Hitchins develops four litmus tests for systems engineering. He states
that the conclusion to be drawn from the application of the litmus tests
to some everyday industrial practices is that many practices which pre-
sent themselves as systems engineering are either inappropriately, ti-
tled, or are, perhaps, only part of a much richer story. Even classic sys-
tems engineering is seen to have some limitations in practice (Hitchins,
1998). Hitchins’ penultimate sentence states, “[systems engineering] is
a philosophy and a way of life”.

 Brooks and Mawby recognize systems engineering and project man-
agement as separate disciplines, both of which regard decision making
as their territory (Brooks and Mawby, 1998). They add that conflicts of
this type are often reinforced by a traditional functional organization
creating barriers between management and engineering so that any
projects conducted in that environment will benefit from the full poten-
tial of an integrated approach to systems engineering and project man-
agement.

Chapter 15 An alternative management paradigm

206

 Robson discusses the paradox in which the tribes [of the various work
disciplines] need to adopt a systems engineering approach, and, “the
challenge is to achieve this without the provocation of the ‘systems en-
gineers are taking over the world’!” (Robson, 2001).

The overlap in, and the difficulty of allocating, the roles of systems engi-
neers, can be overcome in the manner of overcoming any paradox, namely
by a change of perspective or paradigm.

In conventional systems engineering terminology, there is a system (an
organization) that no longer can provide the capability to meet the needs of
its customers. Its evolutionary changes seem to have reached the point of
diminishing returns and perhaps way beyond. Adding layers of complexity is
not the solution. It is time for a replacement system. The first stage in the
process of replacing the system is to recognize the need for a replacement.
Chapter 2 is based on the first paper (within the systems engineering com-
munity) that seemed to recognize the situation and questioned the role of
systems engineering within the current management paradigm stating

“Systems engineering is a discipline created to compensate for the lack
of strategic technical knowledge and experience by middle and project man-
agers in organizations functioning according to Taylor’s ‘Principles of Scien-
tific Management.

Most of today’s systems engineers really appear (work as) to be Re-
quirements and Interface Engineers. They have the responsibility to validate
the requirements since there’s little point in building a system which con-
forms to requirements if the requirements are incorrect. Perhaps those are
two missing ‘ilities’ in the current paradigm.

Project management, BPR, concurrent engineering, TQM and theoretical
systems engineering all seem to be attributes of the same function; namely
producing a product to (the correct) specifications by an organization within
the constraints of resources, budget and schedule. Remember (MIL-STD-
499A, 1974) was written for systems engineering management and (MIL-
STD-499B, 1992) changed the focus to systems analysis and control. This
overlap or duplication seems to be due to defects in the current organiza-
tional structure, and in the case of systems engineering, the transition in
technology from hardware to software. We need a new organizational par-
adigm to simplify the organization such as the one proposed in Chapter 3 and
within that paradigm, there still is a need for someone to have a strategic
perspective of the entire system.”

Transition is taking place. John W. Campbell Jr. wrote that changes
which change the rules of the game and require people to shift their per-
spective are resisted. It is an emotional issue and cannot be settled by logic
(Campbell, 1960). Kuhn wrote that changes which require people to unlearn
what they already know is correct are resisted very strongly (Kuhn, 1970).

Chapter 15 An alternative management paradigm

207

Consequently, it is nigh impossible for managers to unlearn what they know
is the correct way to manage. So the failure of the process improvement
initiatives which require managers to unlearn what they know is the correct
way to manage (paradigm), based on their years of experience on the job,
does not come as a surprise to anyone familiar with Kuhn’s work. Yet the
recent books on improving management all state that management should
unlearn something they do now and change to a different way of doing
things. Unwillingness to unlearn is a major cause of resistance to change.
No wonder that Drucker stated that a paradigm shift takes about 25 years,
namely the time it takes for the unwilling to unlearn proponents of the old
paradigm to retire (Drucker, 1985).

The systems organization is beginning to appear. For example, Crosby
stated that organizations have recognized the need for a drastic change in
their way of doing things (Crosby, 1992) page 10). Some organizations have
almost made the paradigm shift. As companies struggle to boost efficiency
and become more market responsive, they have stripped out layers of man-
agement, broadened the remaining span of control and employed technolo-
gy. Up front planning ensures Quality. The trend in enlightened manage-
ment is to delegate the decision-making and control to the employees doing
the actual work. Employees are taught how to analyse and solve Quality
problems with minimal management supervision, and in some instances, the
lines between workers and middle management blur and even vanish
(Kanter, 1987) page 60). Organizations still use the term “management”, yet
the functions performed by these managers map into the definition of the
functions performed by systems engineers. Surely the next logical step must
be to eliminate managers completely, thereby solving Cobb’s paradox, and
adopt the systems engineering paradigm of management. As Drucker wrote
“the form which management will take may be quite different tomorrow.
The restraints, the controls, the structure, the power, and the rhetoric of
management may change drastically” (Drucker, 1980) page 226), which
means changing their corporate culture.

Thus organizations will suffer upheavals in making the paradigm shift.
Not every organization is going to be able to make the paradigm shift. Many
will fade away like the 381 companies that dropped out of the Fortune 500
listings between 1955 and 1990.

Management as a practice is very old going back to the beginnings of
recorded history (George, 1972; Drucker, 1995). Today’s hierarchical man-
agement structures evolved to control the railroads and mass production
factories of the industrial age, the late 19th and early 20th centuries, and have
largely become redundant because information technology can now route
and filter organisation from the corporate office to the production line faster
(Davidow and Malone, 1992) page 163). However the discipline of modern
management is only about 60 years old, emerging in the post-war US
(Drucker, 1995) page 250);(Johnson, 1997). Thus management and systems

Chapter 15 An alternative management paradigm

208

engineering emerged as disciplines at about the same time and have been
concerned with the same overlapping functions in organisations. Middle
management may also be an artefact due to the lack of information technol-
ogy in the industrial age in the evolution of society from agrarian to infor-
mation.

15.5 Conclusions
The conclusions of this Chapter are:
 The lack of a SEBoK is detrimental to systems engineering, consequently

one must be established quickly.
 However, a comprehensive SEBoK covering all five layers of systems

engineering many never be established because it would have to con-
tain almost the entire technical and managerial bodies of knowledge for
hard systems as well as the body of knowledge relating to soft systems.

 The difficulties in placing the role of the systems engineer within the
current management paradigm and the scope of the SEBoK seem to
confirm the view that systems engineering is a different management
paradigm to that of the Taylor based organizational paradigm.

 The world is in the process of a transition from the Taylor based organi-
zational paradigm to the systems engineering paradigm of management.

 Managers are artefacts of the lack of information technology in the in-
dustrial age in the evolution of society from agrarian to information.

Chapter 16 Does OO requirements eliminate the need

209

16Does	object-oriented	system	
engineering	eliminate	the	need	for	
requirements?

This Chapter uses the product viewpoint to examine system engineering and
object-oriented methodologies and then shows both that systems engineer-
ing is inherently object-oriented and that object-oriented languages such as
the UML may be used to document the user’s needs in a manner that can be
used by developers. The Chapter also suggests a next generation tool con-
cept that can be used to hold both user and developer representation of the
user’s needs as an alternative to, and an improvement on, text mode “re-
quirements”, reducing communications problems and hence increasing the
reliability of the shared meaning of the user’s needs amongst all stakehold-
ers.

Kasser and Schermerhorn wrote that systems engineers needed to use a
methodology that seamlessly interfaced to the software development
methodology to avoid delays and errors in translation from the system re-
quirements to the design phase (Kasser and Schermerhorn, 1994b). So as
software engineering has adopted an object-oriented perspective, system
engineering has attempted to do the same. However, at the same time,
software engineering seems to be discovering for itself, the advantages of
using the functional decomposition approach coupled with an object-
oriented perspective (Chang and Hua, 1994). This Chapter presents a brief
analysis of both systems engineering and software engineering, shows that
systems engineering is inherently object-oriented, and then suggests ways
that three elements of the object-oriented software engineering paradigm
may be used to enhance systems engineering. Furthermore, when these
elements are coupled with a ‘yet to be built’ next generation requirements
tool text-mode based requirements may become an academic issue.

Systems engineering has traditionally been viewed as following a pro-
cess known as the SDLC to bring a system into existence. Systems engineers
are the people who implement the systems engineering process. Blanchard

2002

Chapter 16 Does OO requirements eliminate the need

210

and Fabrycky provide the following definitions (Blanchard and Fabrycky,
1981).

 System - an assemblage or combination of components or parts forming
a complex or unitary whole.

 Elements of a system - Systems are composed of

 Components - the operating parts of a system consisting of input,
process, and output. Each system component may assume a varie-
ty of values to describe a system state as set by control action and
one or more restrictions.

 Attributes – the properties or discernible manifestations of the
components of a system. These attributes characterize the param-
eters of a system.

 Relationships – the links between components and attributes.

 Function – the purposeful action performed by the system.
 Systems and subsystems – Every system is made up of components,

which can be broken down into smaller components. If two hierarchical
levels are involved in a given system, the lower is conveniently called a
subsystem.

Blanchard and Fabrycky also state that systems engineering per se is not
considered as being an engineering discipline in the same context as the
technical specialties it represents (Blanchard and Fabrycky, 1981). The need
for systems engineering is present because many of the engineering special-
ists in one or more of the conventional engineering areas do not have the
experience or knowledge to consider the system as a whole as well as
knowledge of the non-functional technical specialties. Now the goal of sys-
tems engineering is to provide a system that (Section 9.2):

 Meets the customer’s requirements as stated when the project starts.
 Meets the customer’s requirements as they exist when the project is

delivered.
 Is flexible enough to allow cost effective modifications as the customer’s

requirements continue to evolve during the operations and mainte-
nance phase of the system lifecycle.

In the traditional systems engineering paradigm, the systems engineers
partition the system by function such that each component of the system
provides some of the desired capability. Or in object-oriented terminology,
they encapsulate the components of the system by localization of functions
to produce a system. Moreover, Hambleton points out that system engi-
neers do not always map functions to physical components in a 1:1 mapping.
In the example of a bicycle, the front wheel (physical) can be considered as
an element in at least two virtual systems (steering and drive) (Hambleton,

Chapter 16 Does OO requirements eliminate the need

211

1999). In actual fact, a system may be represented by many kinds of objects,
appropriate to the analysis in process.

In practice, systems engineering tends to focus on the “functional capa-
bilities required” to build a physical system (Eisner, 1988). The “non-
functional capabilities” needed or “non-functional requirements” tend to be
shunted aside during development causing later problems when the system
“as-delivered” does not perform its intended task in its operating environ-
ment. This is ironic, because the physical “as-delivered” system has both
functional and non-functional properties.

16.1 The object-oriented paradigm
While software engineering claims to have invented the object-oriented par-
adigm, it was documented as an analysis methodology at least as early as
the 12th Century. An object is characterized by its (Maimonides, circa 1200)
pages 69-70):
 definition;
 part of its definition, namely what it inherits from a parent;
 attributes;
 relationships with other objects;
 internal actions.

Van Vliet states that there are different viewpoints of what the notion of
an object entails, and provides the following definitions (Van Vliet, 2000):

 The modelling (European) viewpoint – an object is a conceptual model
of some part of a real or imaginary world. Each object has an identity
that distinguishes it from all others. Objects have substance: properties
that can be discovered by investigating the object.

 The philosophical viewpoint - objects are existential abstractions fall
into two categories

 ephemeral - exist for a period of time, and
 eternal - live forever.

 The software engineering viewpoint - objects are data abstractions,
encapsulating data as well as operations on the data. This viewpoint
stresses locality of information and representation independence.

 The implementation viewpoint - a contiguous structure in memory
(software); may be composite or aggregate (possesses other objects)

 The formal viewpoint – a state machine with a finite set of values, and a
finite set of state functions.

 The problem domain viewpoint - objects are abstractions reflecting the
capabilities of a system to keep information about it, interact with it, or
both.

Chapter 16 Does OO requirements eliminate the need

212

 The solution viewpoint - objects are encapsulations of attribute values
and their exclusive services.

Van Vliet also notes that objects with the same set of attributes are in
the same class. Individual objects in a class are called instances of the class.
Objects encapsulate state and behaviour where behaviour is described in
terms of services provided by the object, and services are invoked upon re-
ceipt of a message from another object. The behaviour of an object is de-
scribed by systems engineers in terms of the functions performed by the
object, while the software engineer describes the same behaviour in the
terminology of “services provided by the object.” Apart from the semantic
difference in the use of the words “functions” and “services”, Van Vliet’s
objects are systems and subsystems in systems engineering terminology.

The object-oriented paradigm, based on Structured Programming con-
cepts, embodies its own terminology in three basic principles:

 Encapsulation - the concept of placing data and processes, or methods
or routines that operate on that data together and combining them to
create a structure (object) that contains both. In systems engineering
terminology encapsulation is design, and an object would thus seem to
be a subsystem.

 Inheritance - the concept that new objects are derived from existing
objects. These new objects can add to or vary their behaviour with re-
spect to the behaviour of the parent objet. This is the main feature that
can lead to re-use of existing software. Inheritance can be both physical
as well as logical showing up in the hardware world as well. For exam-
ple, a new communications component will inherit characteristics from
existing components.

 Polymorphism – the concept that causes different types of objects de-
rived from the same parent object to be able to behave differently when
instructed to perform a same-named method in a different implementa-
tion.

Van Vliet classifies object-oriented design as a middle-out design meth-
od. The set of objects identified during the first modelling stages constitutes
the middle level of the system. In order to implement these domain-specific
entities, lower level objects are used. This concept is no different to the sys-
tems engineer designing a system using subsystems. The only difference
may be in the scope of the design activity. Hardware engineers designing a
printed circuit board (in general) do not design their own customized inte-
grated circuit components but use COTS ones from a manufacturer’s range.
Today’s software engineer, working with components may have to design
and construct their own components to provide capability not available in
COTS components in order to build the software system.

Chapter 16 Does OO requirements eliminate the need

213

16.2 Different perspectives of systems
Consider the process-product production sequence in the up-front activities
of object-oriented systems engineering and object-oriented software engi-
neering as shown in Figure 16-1. Object-oriented software engineering gen-
erates objects directly from the Use Cases, while current object-oriented
systems engineering first develops requirements and then develops objects.
Electrical engineers will recognize that Figure 16-1 shows the object-oriented
software engineering approach short-circuiting the requirements stage of
object-oriented systems engineering. However, object-oriented systems and
software engineering do have different perspectives of systems as discussed
below.

Figure 16-1 Process-product production sequences

16.2.1 Software engineering

Software engineering considers information flows, and functional require-
ments. Non-functional requirements tend not to be considered in the soft-
ware design. In its early days, software engineering tended to ignore the
physical domain, since the software operation was on a single hardware
platform, however with the advent of distributed systems and client server
techniques, software operates across several hardware platforms and the
system needs to be optimised as a whole.

According to Van Vliet, the object-oriented approach to systems analysis
and design involves the following three major steps in an iterative manner.

 Identify the objects.
 Determine their attributes and services. The functions performed by

the system are represented by the services performed by the objects.

Chapter 16 Does OO requirements eliminate the need

214

 Determine the relationships between the objects.

16.2.2 Systems engineering

In addition to the information flows, and functional requirements, systems
engineering also has to consider the physical properties of a system and the
non-functional requirements. Systems engineering employs different mod-
els or perspectives for different purposes. For example, Hatley and Pirbhai’s
methodology employs three models (Requirements, Architecture and Speci-
fication) (Hately and Pirbhai, 1987), Menzes et al. discuss viewpoint-based
requirements engineering, and its advantages (Menzes, et al., 1999) while
the DODAF calls out 26 different views (DoDAF, 2004). In systems engineer-
ing, each model abstracts attributes so that only the aspects being studied
are seen or in object-oriented parlance uses the concept of “information
hiding.” For example, when considering the characteristics of a laptop com-
puter one model may consider the physical aspects of cabinet, keyboard,
disk drives, etc.; a second may consider the underlying hardware architec-
ture of the computer; and yet a third may examine aspects of heat transfer
inside the cabinet. Systems engineering may use different objects in each
model. Lagakos et al. write that “The object-model formulation views a sys-
tem as a group of interacting objects that work together to accomplish sys-
tem objectives and satisfy system requirements. Use-case and domain mod-
els provide a visual representation for high-level system functionality and
system design” (Lagakos, et al., 2001). If they had used the word “interact-
ing sub-systems” instead of “interacting objects” they would have reiterated
one of the maxims of systems engineering in the language of traditional sys-
tems engineering.

The traditional functional analysis and allocation can be described as fol-
lowing two major steps in an iterative manner.

1. Identify the functions performed by the system.
2. Partition the system such that each combination of one or more

functions is performed by a physical subsystem.

16.2.3 Similarity in analysis and design

The same two factors are implicit in both systems engineering and object-
oriented software engineering, namely

1. The designer determines that the relationships between the ob-
jects/subsystems are such that sum of the capability of the subsys-
tems and the desired emergent properties of the system when con-
structed meet the needs of the customer.

2. The system is to be designed with minimal coupling between sub-
systems/objects and maximum cohesion within a subsystem/object,
namely good engineering practice.

Chapter 16 Does OO requirements eliminate the need

215

Thus systems engineering is inherently an object-oriented approach;
however, the perspectives of systems engineering and object-oriented soft-
ware are different. Somerville states that the initial stage of function-
oriented design relies on identifying functions which transform their inputs
to create outputs while the system is treated as a black box (Sommerville,
1998). The object-oriented design focuses on the entities within the system
and considers the functions as part of the entities. Each design approach will
generally produce different system decompositions. Somerville states that
the most appropriate design strategy is often a heterogeneous one in which
both the functional and object-oriented approaches are used. This is not
surprising as systems engineering uses the identical approach in a ‘design to
inventory’ situation to assemble a system out of components in the invento-
ry.

Chang et al. propose a concept known as function-class decomposition
(FCD) (Chang, et al., 2001). FCD, an iterative process, applies a top-down
approach to decomposing a system while simultaneously identifying and
grouping classes into functional modules, with each module representing a
specific functionality which the system requires. Chang et al. seem to have
discovered and applied the systems engineering process!

16.3 Enhancing systems engineering
In summary, while the object-oriented approach is little different from tradi-
tional systems engineering, it explicitly emphasizes three elements that may
readily be used to enhance systems engineering, namely:
 Properties which have values and attributes. Thus capability and re-

quirements may be expressed as properties provided or properties de-
sired.

 Inheritance which explicitly moves experience from designer into de-
sign. Whereas in systems engineering, the non-functional aspects of a
system were often a function of the experience and expertise of the de-
signer, the concept of inheritance can be used to inherit (non-functional
and other domain) properties and eliminate some of the “missing” re-
quirements of today’’ paradigm.

 Encapsulation or design which can be non-functional (i.e. data, and pro-
cess) as well as the traditional functional approach to partitioning a sys-
tem.

16.4 The (process) interface between systems and software
engineering

The interface has traditionally been at either the SRR or the System Design
Review (SDR). System engineers have focused on generating requirements

Chapter 16 Does OO requirements eliminate the need

216

to ensure that the as-built system is fit for its intended purpose. However,
the current paradigm produces poorly written requirements (Hooks, 1993;
Tran and Kasser, 2005) and various approaches have been proposed since
then to alleviate the situation without much success. For example:
 Jacobs states that a 1997 analysis of the software development process

performed at Ericsson identified “missing understanding of customer
needs” as the main obstacle for decreasing fault density and lead-time
(Jacobs, 1999). Related findings were aggregated under the heading “no
common understanding of ‘what to do’”. The counter measures to
overcome these problems focused on testing the quality of the re-
quirements rather than producing good requirements. There was no
proposal on how to get clear requirements, nor was there a clear under-
standing of what a clear requirement was.

 Goldsmith states that the process of “defining business requirements is
the most important and poorest performed part of system development”
(Goldsmith, 2004).

Thus from this viewpoint, in practice requirements do not seem to be a
useful communications tool for translating between user needs and the sys-
tem and software designers.

16.5 Is there an alternative to “requirements”
Systems engineering is focused on dealing with well-structured problems
(Jackson and Keys, 1984). However, the problem of poor requirements is
complicated and ill-structured, and hence not solvable by the traditional
systems engineering process. As “requirements” are still poorly implement-
ed after all these years, perhaps they should be eliminated or bypassed (au-
tomated). Kasser proposed a tool to improve the wording of require-
ments65, but a greater degree of improvement should be achievable by re-
placing written requirements (Kasser, 2002c). Consider ways in which this
might occur.

Gabb et al. define a requirement as “an expression of a perceived need
that something be accomplished or realized” (Gabb, et al., 2001). Van
Gaasbeek and Martin quote Dahlberg as stating that “we don’t perform sys-
tems engineering to get requirements” (Van Gaasbeek and Martin, 2001) and
add “we perform systems engineering to get systems that meet specific
needs and expectations.” The focus is on user needs, not requirements.
What systems engineering appears to have forgotten is that requirements
are used to document user needs in a verifiable manner, Requirements are a
means, not an end. There is nothing divine about requirements; they are

65 The tool, FRED, evolved into Tiger Pro shown in Figure 17-3.

Chapter 16 Does OO requirements eliminate the need

217

just a convenient poorly-used tool for translating customers’ needs into a
system that should be built.

Requirements are developed as an intermediate work product in the
system development process, and are developed to provide formal commu-
nication between the stakeholders. Writing text-based unambiguous re-
quirements for combinatorial and sequential scenarios in the form of imper-
ative construct statements is difficult. Timing and state diagrams are often
used within the context of the SRD to provide the necessary information.
Thus the concept of stating user needs (under certain circumstances) via
diagrams is already in use in systems engineering. Sutcliff et al. proposed
reducing human error in generating requirements by analysing requirements
using an approach of creating scenarios as threads of behaviour through a
Use Case, and adopting an object-oriented approach (Sutcliffe, et al., 1999).

16.6 The UML Perspective
The UML (UML, 1999; 2005) being a language has no inherent limitation on
the number and types of objects, and is extendable. There thus seems to be
no reason why UML should not be used to represent viewpoints or models
at the system level as well as the software level. For example Holt applies
UML to systems design significantly predating the development of SYSML66

(Holt, 2001), the modification to UML for systems engineering. Holt pro-
vides practical examples that show how the UML can be applied to non-
software-based systems. The UML perspective on complex systems can be
summarized as:
 Best approached through a small set of nearly independent views.
 No single view is sufficient.
 Every model may be expressed at different levels of fidelity.
 The best models are connected to reality.

This perspective is little different to that of Checkland (Checkland, 1991)
and Kline (Kline, 1995). The UML is a modelling language for specifying, con-
structing, visualizing, and documenting, the artefacts of a software-intensive
system. The UML is not a process nor is it a methodology. This fact does not
seem to be appreciated in the systems engineering community, as for exam-
ple, Gibbons writes “The UML has provided a methodology that encom-
passes many of the up-front systems engineering activities in an otherwise
object-oriented-based program” (Gibbons, 2001). UML can be used to doc-
ument systems engineering products in those up-front systems engineering
activities within conventional systems engineering methodologies. UML
diagrams for models cover:

66 SYSML can be thought of as providing a standard set of extensions.

Chapter 16 Does OO requirements eliminate the need

218

 Use cases;
 Classes;
 Behaviour in terms of state, activity, and interaction;
 Charts - showing sequence and collaboration;
 Implementation, aspects of components and deployment.

UML has a four-layered architecture, which can result in systems being
constructed from the centre outward. The focus is on Use Cases, which
drive the design. This is little different to the systems engineering approach
in which the OCD is one of the two critical documents in the SDLC (Kasser
and Schermerhorn, 1994b). Gabb summarizes the purpose of the OCD as
describing the operation of a system in the terminology of its users stating
that it may include identification and discussion of the following (Gabb,
2001):

 Why the system is needed and an overview of the system itself.
 The full SLC from deployment through disposal.
 Different aspects of system use including operations, maintenance, sup-

port and disposal.
 The different classes of user, including operators, maintainers, support-

ers, and their skills and limitations.
 Other important stakeholders in the system.
 The environments in which the system is used and supported.
 The boundaries of the system and its interfaces and relationships with

other systems and its environments.
 When the system will be used, and under what circumstances.
 How and how well the needed capability is currently being met (typically

by existing systems).
 How the system will be used, including operations, maintenance and

support.

Gabb also provides the traditional systems engineering perspective
when he writes that “an OCD is not a specification or a statement of re-
quirement - it is an expression of how the proposed system will or might be
used, and factors which affect that use. As such it is not obliged to follow the
‘rules’ of specification writing and can be relatively free in its language and
format. Generally it will contain no ‘shalls’”. However, there is nothing to
preclude the use of Use Cases for describing all of Gabb’s points in a verifia-
ble manner in a manner understandable to both users and developers.

Lagakos et al. state that a Use Case is simply a set of system scenarios
tied together by a common user goal (i.e., aspect of system functionality),
and describes a way in which a real-world actor would interact with the sys-
tem (Lagakos, et al., 2001). According to them, a Use Case specification con-
tains:

Chapter 16 Does OO requirements eliminate the need

219

 A list of actors (actors are anything that interfaces with the system ex-
ternally);

 A boundary separating the system from its external environment;
 A description of information flows between the actors and individual

Use Cases;
 A description of normal flow of events for the Use Case, and
 A description of alternative and/or exceptional flows.

Gabbar et al. state that UML has been proven to be an efficient and
comprehensive approach that can describe all three dimensions of the phys-
ical aspects of a production plant (static, behaviour and function) (Gabbar, et
al., 2001). However, Jorgensen writes, “Use Cases do not replace require-
ments” (Jorgensen, 2001) and Ogren points out that the UML is vague when
it comes to requirements capture, and there is no precise definition of what
a Use Case should look like (Ogren, 2001). In systems engineering terminol-
ogy, the UML states the requirements for a Use Case, but does not provide a
design. Repeating the statement made above, the UML is a language not a
methodology. As such while it may be used for documenting requirements,
it does not have an inherent methodology for capturing them.

16.7 Replacing “requirements” by properties
So, if Use Cases can represent the user’s needs in a manner verifiable by all
stakeholders, then an improvement on the current text-mode based re-
quirements paradigm will have been made. The use of Use Cases driving an
object-oriented approach describing properties of components can provide
the same representation of user needs as that of “requirements” if each
property consists of an attribute and a value.

Consider “property” as the totality of the attribute and its value (func-
tionality and Quality criteria). Then requirements can be stated as the prop-
erties needed, and capability can be stated as the properties measured or
exhibited by the object. The words functional and non-functional require-
ments no longer have to be used. When the system is broken down into
subsystems each property (attribute and value) is allocated subsystem ele-
ments67. Traceability of properties (functional and non-functional) is built
into the approach.

The objective perspective shown in Figure 16-2 lists the properties of a
component68. Each property has an attribute, which has some value. In the
example of a communications object, as far as performance attributes are

67 Desired emergent properties can be allocated to a virtual subsystem.
68 This is a typical Delphi display of the properties of a software component being
used to display the properties of a subsystem.

Chapter 16 Does OO requirements eliminate the need

220

concerned, the data input attribute has a value of 1000±10 units, the Data
output attribute a value of 1000±10 units, etc. The services (functions) per-
formed by the object have to do with ingesting the data input, performing
some action on the data and then forwarding processed data. A few of the
non-functional attributes such as reliability (Mean Time between Failures
(MTBF), and Mean Time to Repair (MTTR)) and operating temperatures are
also shown.

Figure 16-2 The object view

16.8 The next generation of requirements tools
From a historical perspective, user needs, expressed as “requirements” were
originally transmitted in text-mode requirements documents and specifica-
tions. As tool technology advanced requirements databases were employed
and these documents became printouts or reports from the databases. To-
day’s requirements tools tend to operate at this level. Systems and software
engineers using Use Cases can employ tools using the appropriate represen-
tation provided by the tools at hand and a new tool.

Visualize a project management tool. The project management tool
stores information and presents several views (abstractions) to the user.
Typical views are GANTT and PERT charts. In a similar manner, a new type of
object-oriented systems engineering tool could present information in the
user diagrammatic format (e.g. process flow charts) as well as in developer
format (UML or whatever development language becomes the prevalent
paradigm in the future).

Thus the next generation of network centric systems engineering tools
connect via the corporate IDE may have the capability to describe user needs
in ways that are both object-oriented and better than the current generation

Chapter 16 Does OO requirements eliminate the need

221

of text-mode based requirements tools. In addition, once an object-oriented
systems engineering/object-oriented software engineering language be-
comes the language of design, other currently troublesome issues may be-
come moot. For example, the design of interfaces between different engi-
neering tools will be easier. Interface designers will just face the relatively
simple problem of transferring the content of the language rather than the
thorny problem of “sharing meaning” (Harris, 2000).

16.9 True object-oriented system engineering
Systems engineering is inherently object-oriented and needs only a slight
enhancement to seamlessly interface with function-class decomposition
based object-oriented software engineering. This seamless interface must
be implemented by simplifying the current process, not by adding a layer of
complexity between systems and software engineering. The proposal for
simplification herein is to make a few changes to the way systems engineer-
ing is performed, namely:
 Use the concept of inheritance so that requirements” are not missed by

design engineers lacking experience and domain expertise.
 Partition the system for optimal minimally coupled system level compo-

nent designs. This will mean that system and software engineers will
have to work together in the up-front stages of the SDLC before the par-
titioning into subsystems takes place. This no different to the system
engineer working with other technical engineering specialists such as re-
liability, manufacturing and thermal engineers.

 Stop referring to functional and non-functional requirements and start
referring to properties needed (by customers) and properties provided
(by components in existence or to be built).

16.10 Conclusions
Systems engineering is indeed inherently object-oriented. The major differ-
ences in the object-oriented approach between systems engineering and
software engineering seem to be that software engineering tends to pick
one model or solution early in the design process and run with it as men-
tioned in Chapter 12 while textbook systems engineering looks at alterna-
tives and then selects the optimal one based on a set of evaluation criteria.
Thus systems engineering seems to operate at the UML meta-model level.

Using an object-oriented approach and the appropriate next generation
tools to capture and track properties should result in more systems being
built correctly the first time avoiding costly rework after delivery.

Chapter 16 Does OO requirements eliminate the need

222

Systems engineering is all about ensuring that all the properties of the
system as delivered (system capability) are at least equal to the properties of
the system needed (system needed). Thus it is requirements free.

Chapter 17 Object-oriented requirements

223

17Object-oriented	requirements	
engineeringand	management	

This Chapter takes a process-product object-oriented perspective on re-
quirements engineering. The Object-oriented requirements engineering
described in this Chapter is an approach to encapsulating information about
the process and product, as well as functionality into a requirements object.
This Chapter:
 Identifies candidate properties of a requirement object based on infor-

mation in the process (development, management and test and devel-
opment streams of work in the SLC) as well as information about the
product needed.

 Describes some of the functionality that could be added to the require-
ments object.

 Concludes that object-oriented requirements engineering and manage-
ment can effect a significant reduction of the problems currently en-
countered in the SLC due to poor requirements engineering and man-
agement.

The systems and software development industry is characterized by a
paradigm of project failure and cost and schedule overruns. The situation
has been described by Cobb’s Paradox (VOYAGES, 1996), which stated “We
know why projects fail, we know how to prevent their failure --so why do
they still fail?” One of the known contributing causes of these project fail-
ures is poor requirements engineering and management, which has been
repeatedly and widely discussed and documented for at least 10 years
(Hooks, 1993; Kasser and Schermerhorn, 1994a; Jacobs, 1999; Carson, 2001)
etc. However, this continual documentation and discussion of the problem
of poor requirements engineering and management has not resulted in a
practical solution to the problem. This Chapter contains a preliminary intro-
duction to an object-oriented approach to requirements engineering that
might help to reduce the contribution of poor requirements engineering and
management to project failures.

2003

Chapter 17 Object-orientated requirements

224

17.1 Requirements engineering and management
As quoted in Section 8.3 requirements engineering and management are
evolving as evidenced by changes in the definition of the term. There has
since been recent recognition that a requirement is more than just the im-
perative statement. For example, both Alexander and Stevens and Hull et al.
discuss additional properties of the text-based requirement (e.g. priority and
traceability) in conjunction with improving the writing of requirements
(Alexander and Stevens, 2002; Hull, et al., 2002). Now the IEEE States (IEEE
CCCC, 2003), “Requirements identify the purpose of a system and the con-
texts in which it will be used. Requirements act as the bridge between the
real world needs of users, customers and other stakeholders affected by the
system and the capabilities and opportunities afforded by software and
computing technologies. The construction of requirements includes an anal-
ysis of the feasibility of the desired system, elicitation and analysis of stake-
holders’ needs, the creation of a precise description of what the system
should and should not do along with any constraints on its operation and
implementation, and the validation of this description or specification by the
stakeholders. These requirements must then be managed to consistently
evolve with the resulting system during its lifetime”.

However, in practice, there is difficulty in adding these additional prop-
erties to the traditional requirement document or database and then man-
aging them. This is because the current systems and software development
paradigm generally divides the work in a project into three independent
streams – Management, Development, and Test (Quality) as shown in Figure
2-2. Thus requirements engineering tools contain information related to the
Development and Test streams (the requirements) while the additional
properties tend to be separated in several different tools, (e.g. Requirements
Management, Project Management, WBS, Configuration Control, and Cost
Estimation, etc.). Moreover, activities that have become increasingly identi-
fied as being critical to success (e.g. risk planning and management) in many
cases are not performed in the current paradigm. In those cases where they
are performed, they tend to be treated as add-ons, and implemented in a
complicated process that could have been designed and pictured by W.
Heath Robinson (UK) or Rube Goldberg (USA)69.

69 Cartoonists in the USA and UK who drew cartoons of complicated systems de-
signed to perform simple functions.

Chapter 17 Object-oriented requirements

225

17.2 The object-oriented paradigm
The object-oriented paradigm however, not only provides for these add-on
activities it also provides a place to store them, namely as properties within
the requirement object. Consider “property” as the totality of the attribute
and its value. Chapter 16 expressed “requirements” in terms of “properties
and services needed” and capability in terms of “properties and services
provided” where each property consists of an attribute and a value. The
words functional and non-functional requirements no longer have to be
used. When the system is broken down into subsystems each property (at-
tribute and value) is allocated to appropriate subsystem elements. Tracea-
bility of properties (functional and non-functional) is built into the approach.
Moreover, as described below, the packaging of processes or functionality
together with the data inside the requirement object provides for automat-
ing some of the manual processes that contribute to the successful realisa-
tion of systems but which may be overlooked in the current paradigm.

17.3 Object-oriented systems engineering
The SDLC tends to begin with an undesirable situation, problem or a need.
The development process begins by clarifying the need and then articulating
remedying the need as a high level solution, in the form of a concept of op-
erations of what the solution to the problem, or type of system that satisfies
the need, will do. Once the functionality of the system is understood, a set
of requirements for a product (the system) that will meet the need is devel-
oped. This is reviewed at the SRR, and when accepted, is implemented to
realise the needed solution to the problem. Thus, the focus of the require-
ment in the functional paradigm is on the properties and functionality of the
product to be produced.

Figure 17-1 The gap in object-oriented systems engineering

Chapter 17 Object-orientated requirements

226

Object-oriented systems engineering has a disconnection in its process
as shown in Figure 17-1. Concepts of operations are stated in the form of
Use Cases involving the interaction of objects, and the system is developed
to implement the Use Cases via an object-oriented approach.

Requirements however remain firmly in the functional paradigm as ob-
ject-oriented systems and software engineering in general, has not, applied
the object concept to requirements. The general approach seems to be to
either:

 Treat requirements as something that has to be produced in the early
stages of the SDLC, and sometimes, adding properties of traceability and
priority. Schach for example, still partitions requirements into function-
al and non-functional, but does add the properties of traceability and
priority (Schach, 2002) page 294).

 Ignore requirements other than those that can be expressed in Use Cas-
es. This approach in general just seems to articulate the user’s needs in
two redundant ways (Use Cases and requirements).

Several approaches to object-oriented systems engineering have been
proposed (e.g. (Hopkins and Rhoads, 1998; Meilich and Rickels, 1999; Lykins,
et al., 2000)) and there is an INCOSE special interest group working on up-
grading the UML to add “systems” aspects. So from a process perspective
the front end of the systems engineering process (concept of operations
stating the customer’s need) is object-oriented; the back end of the process
(the implementation of the system to meet the customer’s needs) creates
physical objects so it is also object-oriented, yet the requirements still re-
main in the functional paradigm. Kasser and Schermerhorn wrote that sys-
tems engineers needed to use a methodology that seamlessly interfaced to
the software development methodology to avoid delays and errors in trans-
lation from the system requirements to the design phase of the SLC (Kasser
and Schermerhorn, 1994a). Consequently, there is a need for object-
oriented requirements in an object-oriented implementation paradigm.

17.4 Research Question
The major question is “what are the properties of an object-oriented re-
quirement? The answer is not simple. Before attempting to identify the
properties of object-oriented requirements, a set of rules were established
based on the maxim that a good requirement has the following three char-
acteristics:

1. It describes something about the physical system that will meet
the needs of the customer. This is the traditional text-based sen-
tence that covers the functional and non-functional aspects of the
system being produced.

Chapter 17 Object-oriented requirements

227

2. It facilitates (or rather not does not impede) the production pro-
cess. This characteristic is derived from TQM which is defined by
NASA as the application of systems engineering to the work envi-
ronment) (NASA, 1992b) and is concerned with the effectiveness of
the production process. While requirements define a need, they
can also be viewed from the contractual perspective. The cost of
realising a system is based on the work and materials needed to
transform needs into systems. Properties based on this characteris-
tic include vagueness, understandability and ambiguity, namely
properties that lead to cost escalations, schedule delays, or the pro-
vision of undesired functionality.

3. It is something the customer really wants. This is the most difficult
characteristic since customers do not always to state the real re-
quirement.

The first avenue to be explored on the journey to identify the properties
is the usage of requirements in the SDLC and to explore how the object-
oriented paradigm can improve the current situation.

Figure 17-2 Requirements drive the work (Kasser, 1995)

17.5 Requirements drive the work
The requirements elicitation process produces a set of requirements, which
represent the documentation of a function and performance of a system
that meets the customer’s needs. Consequently, every element of the work
ought to be traceable (and chargeable) to a specific requirement or set of
requirements. The work to implement a set of requirements (realise a sys-
tem specified by the requirements) takes place takes place in three streams

Chapter 17 Object-orientated requirements

228

of activities (work) shown in Figure 2-2 (management, test and evaluation,
and development); hence, every requirement can be thought of as having
properties driving the work in each of the three streams. This produces a
view of a requirement statement as the tip of an iceberg, where the state-
ment can be seen, but the underlying work to produce the capability that
meets the requirement is hidden. An alternative view, a more traditional
perspective in the form of an overview of the documentation tree, in which
requirements drive the work to produce the various process-product docu-
ments, is presented in Figure 17-2.

Effectively, object-oriented requirements engineering and management
not only performs the requirements engineering at the front end of the SLC,
but also provides integrated information for the functions of project man-
agement, design, development, test and evaluation, and operations and
maintenance as performed in the current paradigm. As in the current para-
digm, the implementation work plan can be published in three documents,
namely:

 The SRD.
 The SEMP.
 The systems engineering Test and Evaluation Master Plan (TEMP).

Chapter 8 documented researching the SDLC from an information per-
spective, and determined that these documents may be considered as sum-
maries of the properties of the requirements in each of the appropriate
stream of work. Consider the contents of each of the documents. For each
document, the following properties of the requirement apply.

 The unique identification number – to clearly identify the requirement.
 The text of the requirement statement – conforming to the require-

ments for writing requirements (Kasser, 1995).

The other properties of the requirements are document specific as fol-
lows:

17.5.1 The system requirements document

The SRD contains the documented solution of what has to be done to pro-
vide a solution to the customer’s problem (based on the OCD). The system
requirement document should contain the following information for each
requirement:
 Traceability to source(s) – where the requirement came from, i.e. the

concept of operations, regulations, specific people, etc.
 Rationale for requirement – to communicate the reason why the re-

quirement was included in the first place. This information is important
for considering change requests during the operations and maintenance

Chapter 17 Object-oriented requirements

229

phase of the SLC. This information is sometimes included as comments
in the current paradigm, but is not required.

 Traceability sideways to other documents (or databases) at the same
level of decomposition of the system. This provides information for use
by the CCB in considering the impact of requested changes.

17.5.2 The systems engineering test plan

The systems engineering test plan drives the T&E process. The systems en-
gineering test plan should contain the following information for each re-
quirement:
 Acceptance criteria – which are provided in response to the question

“How will we know that the requirement has been met by the system?”
 Planned verification methodology(s) - demonstration, analysis, etc.
 Testing parameters – the sections of the test plans and procedures that

verify the system meets the requirement.
 Resources needed for the tests – people, equipment, time, etc.

17.5.3 The systems engineering management plan

The SEMP contains the planned resources and schedule necessary to per-
form the design and testing activities. The systems engineering manage-
ment plan should contain the following information for each requirement:
 Traceability to implementation – identifies the Build in which the re-

quirement is scheduled to be implemented.
 The priority of the requirement.
 The estimated cost to construct and test the elements of the system

that provided the functionality specified by the requirement.
 The level of confidence in the cost estimate.
 Risks – implementation, programmatic, and any other identified. Risk

mitigation approaches are an attribute of the risk.
 Production parameters – the WBS for the work to be done to meet the

requirement.
 Required resources for the work, when they will be required and for

how long.

Chapter 8 summarised this information in the form of a set of QSE as be-
ing necessary for effective system and software development. The QSE are
not new. They are known and have been used individually in project man-
agement and systems engineering for many years. For example, the US Mili-
tary Standard 2167A prescribed a set of software development folders that
shall include (directly or by reference) the following information (MIL-STD-
2167A, 1998):

 Design considerations and constraints.

Chapter 17 Object-orientated requirements

230

 Design documentation and data.
 Schedule and status information.
 Test requirements and responsibilities.
 Test cases, procedures, and results.

Some of the QSE have also been incorporated as fields in requirements
management tools from time to time. However, these instances seem to be
the exception rather than the rule. The QSE also do not seem to have been
used together in an integrated manner. The object-oriented approach inte-
grates them. Consider the QSE as the initial set of candidate properties of
requirements and thus at least improve on the current paradigm by provid-
ing a place to store those additional properties in an integrated database
containing information about the process and product. Since the infor-
mation in the QSE database covers the three streams of work (management,
design, and test and evaluation) in the process shown in Figure 2-1, in the
object-oriented paradigm, the three streams of work are considered to be
interdependent not independent (Kasser, 1995).

17.6 Adding other object–oriented properties and processes
to the QSE

So far the QSE database has been populated from the content of the three
documents. Software engineering articulated the object-oriented approach
as a way of encapsulating data and processes in ways that were not tied to
physical implementations. Consider the addition of other object-oriented
properties and processes to the data in the QSE database as follows.

17.6.1 Properties

The following properties could be added to the QSE:
 Non-functional elements of capability needed – survivability, reliability,

maintainability, etc.
 Access control property- to control access to the requirement or select-

ed properties. This might be used in classified situations or in corporate
situations where two companies share information.

 Version control – identifying the version of the database.

17.6.2 Processes

The object-oriented paradigm encapsulates processes (functionality) as well
as data into an object. Consider the following types of processes that might
be encapsulated within the QSE database FREDIE implementation of an ob-
ject-oriented requirement.
 Text clarification. This process scans the wording of the requirement

and flag any requirements that are poorly written or do not comply with

Chapter 17 Object-oriented requirements

231

the requirements for writing requirements (Kasser, 1995). Kasser de-
scribed the First Requirements Elucidation Tool (FRED), a prototype
software tool that performed this process (Kasser, 2002c). FRED pro-
duced a Figure of Merit (FOM) for a SRD. The FOM is a simple one-
dimensional measurement for the quality of a document based on the
presence or absence of “poor words” derived. The FOM allows compar-
isons to be made of the quality of documents of different sizes. The
FOM is based on (Juran, 1988) and was calculated using the formula

FOM = 100 * (1 - number of defects / number of requirements).

Figure 17-3 Tool to Ingest and Elucidate Requirements (TIGER)

A document without any defects achieves a FOM of 100. A document
with a large number of defects can receive a negative FOM. This situation
arises if requirements in the document contain more than one defect. FRED
and its successor, a Tool to InGest and Elucidate Requirements (TIGER),
shown in Figure 17-3, have been used in class lectures on requirements en-
gineering in three postgraduate courses in the University of South Australia.
Before TIGER was introduced, the discussions in the tutorials focussed on

Chapter 17 Object-orientated requirements

232

the structure and format of requirements. After TIGER was introduced and
used to elucidate sample requirements, the focus of the in-class discussions
changed to cover the difficulties of writing good requirements. This is a sig-
nificant shift in perspective (Kasser, et al., 2003).

 Feasibility checker. This process could check the feasibility of the re-
quirements and flag those that were not feasible at the time they were
written before they were accepted (Kasser and Cook, 2002).

 Risk reduction and monitoring. This process could ensure that all risks
have mitigating strategies and each strategy is implemented in a WBS
element, and provide appropriate warnings.

 Property correlation. This process could correlate properties and pro-
vide an indication when something needs further examination. For ex-
ample, the process could correlate:

 Text of requirement with acceptance criteria and identify require-
ments without corresponding acceptance criteria.

 Estimated cost to implement with priority and risk. The customer
could then be asked if the requirements with the following com-
bined properties were really needed: (1) high-risk and low-priority;
(2) high-cost and low-priority; (3) high-risk and high-cost? The an-
swers may be in the affirmative, but at least the decision to imple-
ment will be an informed one.

 Production process correctness. This process could check for the pres-
ence or absence of other properties and provide indicators. For exam-
ple, it could check that all requirements have acceptance, criteria, priori-
ties, and cost estimates.

 Progress monitoring. The question “what do you mean, you can’t tell
me how much of my project has been completed?” is a very difficult one
to answer in the current paradigm (Chapter 4). However, the use of
CRIP charts can provide a better answer to the question than the meas-
urements made in the current paradigm. They can also provide early
identification of anomalies in the implementation process.

 Facilitating and ensuring the completeness of testing. This process
could automate a manual process of building test compliance matrices.
It would convert written requirement paragraphs containing multiple
requirements into separate requirement paragraphs. As an example of
the work that this tool could expedite, consider the following require-
ment (STDADS, 1992):

204.1 DADS shall automatically maintain statistics concerning the num-
ber of times and the most recent time that each data set has been accessed.
These same statistics shall be maintained for each piece of media in the
DADS archive.

Chapter 17 Object-oriented requirements

233

The function would split this requirement into the following four re-
quirements to simplify tracking the completeness of the test plans.

204.1a DADS shall automatically maintain statistics concerning the
number of times and the most recent time that each data set has been ac-
cessed. These same statistics shall be maintained for each piece of media in
the DADS archive.

204.1b DADS shall automatically maintain statistics concerning the
number of times and the most recent time that each data set has been ac-
cessed. These same statistics shall be maintained for each piece of media in
the DADS archive.

204.1c DADS shall automatically maintain statistics concerning the num-
ber of times and the most recent time that each data set has been accessed.
These same statistics shall be maintained for each piece of media in the
DADS archive [has been accessed].

204.1d DADS shall automatically maintain statistics concerning the
number of times and the most recent time that each data set has been ac-
cessed. These same statistics shall be maintained for each piece of media in
the DADS archive [has been accessed].

Leaving the sections of the requirement that were not being tested in
place but stricken through clearly identifies which section of the require-
ment is being tested. An unfortunate side effect is that it would also clearly
show the defects in the requirement. Note that the phrase ‘[has been ac-
cessed]’ has been moved in the last two sub-requirements to clarify the
sub-requirement.

17.7 Applying the concept of inheritance
Inheritance may be used in ways that extend the software engineering us-
age. Traceability is an inheritance function. Design elements may be traced
back to requirements, regulations, etc. Expert system technology could be
used to build “human experience” and tacit knowledge into the process part
of the object (Kasser and Cook, 2002). This could add Artificial Intelligence
to current generation requirements engineering and management tools.

Inheritance is a major advantage of the object-oriented requirements
engineering paradigm since most requirements are written for systems that
are similar to, or a class of, an existing system. For example, a communica-
tions satellite is a type of spacecraft, a destroyer is a type of surface ship,
and a new car is similar (if not almost identical) to the previous model. Re-
quirements reuse is becoming desirable. However, reuse is currently carried
out in an ad-hoc manner (Von_Knethen, et al., 2002); the person in charge
copies an old document and edits or enhances all parts they consider rele-
vant. They integrate parts from other documents that deal with functionali-

Chapter 17 Object-orientated requirements

234

ties they have to add. Obviously, this approach is error prone. The concept
of inheritance can be applied to requirement reuse to reduce errors. For
example, inheritance could be implemented as:

 A function that identifies the type of system and inherits requirements
from a standard database for that type (class) of system as suggested in
Chapter 16. This functionality would maximize the completeness of the
requirements by ensuring that applicable non-system specific perfor-
mance requirements are not overlooked.

 A function that allows selected requirements to be copied from one
database to another. This functionality would save time when creating
requirements for new systems having commonality of requirements
with an existing system.

 Templates containing selected information for specific types of docu-
ment printouts from the database.

17.8 Populating the properties of the requirement
The process of accepting requirements may be represented as shown in Fig-
ure 8-2. The customer’s need (source of the requirement) is represented as
a request for capability (requested requirement) and allocated an identifica-
tion number. The requirement request is then assessed for priority, and cost
and schedule impact on the SLC, as well as for risks and conflicts with exist-
ing requirements. The result of the impact assessment is presented to the
customer who then decides to accept, reject, or modify the requirement
request. However, some of these impact assessments are generally not per-
formed in the current paradigm.

The entire set of properties cannot be populated at the same time.
Population begins as shown in Figure 17-4. The initial set of properties of a
requirement request submitted to the CCB consists of the:

 Requirement statement or representation;
 Source of the requirement (traceability);
 Key words;
 Rationale for the requirement;
 Acceptance criteria;
 Non-functional properties (e.g. reliability, maintainability and survivabil-

ity); and
 Priority of the need for the capability.

Chapter 17 Object-oriented requirements

235

Figure 17-4 Populating the properties of the requirement

The requirement request is allocated an identification number. After
performing the total impact assessment (Chapter 13), the next set of proper-
ties are populated (estimated cost to implement, risk (implementation and
programmatic and their mitigation) and the Build in which the requirement
will be implemented). The impact assessment is then negotiated with the
customer who may accept, reject or modify the assessment. If accepted the
properties are incorporated in the QSE database. If rejected, the reason for
the rejection is also documented in case the same request shows up at a
later time. Later on in the SLC, the test properties are populated as the test
team develops the test plans etc. When the Build Plan is developed the im-
plementation properties are further populated, and so on.

17.9 Benefits of the object-oriented approach to require-
ments engineering

The object-oriented approach to requirements engineering and manage-
ment:
 Simplifies the SDLC by containing the add-on tasks (e.g. risk manage-

ment) in the current paradigm, by definition, which if implemented at
all, tends to be implemented in a complex process that could have been
designed and pictured by W. Heath Robinson (UK) or Rube Goldberg
(USA).

 Improves the production of well-written requirements via the use of a
tool to ingest and elucidate requirements.

Chapter 17 Object-orientated requirements

236

 Links all work back to the original requirements or to design decisions
based on the requirement. The three documents discussed above are
more complete since the additional properties of the requirements pro-
vide information that is generally missing in the current paradigm.

 Provides early identification of anomalies in the implementation process
via CRIP charts.

 Incorporates by definition the additional properties of requirements
now becoming associated with requirements engineering and manage-
ment, thus avoiding the “add-on” approach of the current paradigm.

 Provides more of the information necessary for effective command and
control (management) of the resources needed to realize the system
than is generally available in the current paradigm. For example, the
priorities of the requirements can be graphed in the form of a Bar chart
as shown in Figure 17-5 and examined. If the profile looks like the one
in the figure, then it doesn’t seem to have much of a priority and is a
candidate for cancellation.

Figure 17-5 Priority profile

 Provides new perspectives on the system. For example, various proper-
ties can be examined at the SRR (before the system is built and the cost
to effect changes is relatively low) and questions posed that are not eas-
ily identified or answered in the current paradigm. Typical examples
are:

 How will the customer know that a requirement has been met? The
documentation of the requirement statement and acceptance crite-
ria at the same time helps both elucidate the requirement and min-
imize the acceptance of requirements whose implementation can-
not be verified or achieved.

 Is a high (estimated) cost to implement, low priority requirement
really needed?

 Have the high priority requirements been assigned to early Builds?
This is desirable, so that future budget cuts would tend to eliminate
the lower priority performance characteristics.

Chapter 17 Object-oriented requirements

237

 What is an appropriate Risk Profile for the type of system to be real-
ised and is that the same profile as the instance being realised? The
risks could be assigned values between 1 and 10, and the resulting
profile presented as a Bar chart to provide a visible risk profile as
shown in Figure 17-6. The Risk Mitigation plan would become an-
other abstracted view of the QSE database.

Figure 17-6 Risk profile

 Minimises loss of information and maximises correctness of information
across the SLC stages by considering all documents as views of the ob-
ject-oriented QSE database.

 Provides for intelligence to assist in the elicitation and elucidation of
requirements.

 When coupled with the Blackboard approach used in Artificial Intelli-
gence, allows concept demonstration tools to be developed and de-
ployed rapidly (Kasser and Cook, 2003; Kasser, et al., 2003).

17.10 Future research
The QSE database is not the complete set of properties of a requirements
object. It is only the first few steps along a journey that will determine a set,
or sets, of properties for object-oriented requirements. Future research
should examine areas, such as which properties are appropriate, identifying
classes and methods appropriate to the process properties as well as the
product properties and the nature of the Requirements Class Hierarchy.

The other avenue of research will, in the manner of systems engineer-
ing, begin with a concept of operation for how the objects could be used.
Typical Use Cases might start with the examples of process functionality
mentioned above, and continue to explore:

 How the properties of object-oriented requirements might be used as
smart checklists.

Chapter 17 Object-orientated requirements

238

 How requirements objects can be typed, interrelated, and re-factored,
as understanding of the design implications evolve.

 How requirements objects can be elaborated by Design and Test as the
project progresses, thereby generating increased confidence of opera-
tional acceptance of the system.

 If and how tools incorporating requirement objects may be used as the
high-tech equivalent of the paper-based Military Standards, so beloved
of the previous generation of systems engineers.

 How requirements objects might facilitate traceability from the highest
level statement of need to the lowest level of implementation.

 If, and how requirements objects facilitate the engineering of complex
systems.

 How object-oriented requirements can lead to object-oriented Capabil-
ity Development and provide a way to manage the acquisition of Sys-
tems of Systems.

 Can tools such as CRIP charts really provide early warnings of project
problems?

17.11 Summary
This Chapter has provided an overview of an object-oriented approach to
requirements engineering and management together with some of the an-
ticipated benefits. The properties of the requirement object so far identified
contain data and functionality that pertain to the process as well as the
product. This integration of information from the three streams of work is
different to the current paradigm, which considers the three streams as in-
dependent.

17.12 Conclusions
Object-oriented requirements engineering by virtue of having many of the
desirable additions to the current paradigm already built in, forces them to
be addressed during the SLC and hence should be able to reduce the contri-
bution of poor requirements engineering and management to project fail-
ures. However, object-oriented requirements engineering does not stop
there. It seems to have several other advantages over the current paradigm.
Further research is called for.

17.13 Recommendations
Perform object-oriented systems engineering without the use of “require-
ments”. The word “requirement” is closely coupled to the functional para-
digm focussing on the product needed to provide the solution to the cus-

Chapter 17 Object-oriented requirements

239

tomer’s problem.
In the object-oriented paradigm, the terminology should change to cor-

respond with the change in focus. Customer’s needs should be stated in
terms of capability needed. Contractors should develop and provide capabil-
ity to meet the need. T&E should test the capability provided to ensure the
need is met, and evaluate the capability provided to determine the perfor-
mance envelope.

“Capability” can be coupled to both the product and the process that
produced the product. While requirements and specifications may still be
suitable for simple systems, complex systems tend to provide capability. So
perhaps in the future a better term for the process of the engineering of
complex systems might be Object-Oriented Capability Development.

Chapter 18 Reducing and managing complexity

241

18Reducing	and	managing	
complexity

The world has been turning to systems engineering to help manage the
problems of complexity (Shinner, 1976) for at least 28 years and no practical
solution is in sight. This Chapter views the system from the perspective illus-
trated in Figure 1-3 namely that systems are defined by their boundaries and
suggests that the solution to the problems of complexity will only be found
by using “out-of-the-box” thinking to change the paradigm (Kuhn, 1970) and
initiates that thinking process by:
 Pointing out that the definitions of the word “system” are numerous

and different.
 Hypothesising that these many definitions are formulations of problem

statements and proposing a semantically loaded definition of the term
‘system’ from an object-oriented perspective that incorporates the hy-
potheses of this Chapter.

 Discussing the reasons for and implications of, the new definition and
proposing that Complexity can be dealt with, and managed by redraw-
ing the internal and external system boundaries in the context of a Sim-
plicity paradigm.

 Sharing some perspectives on the consequences of the new definition
and the insights it provides.

 Discussing a case study of a project success attributed to the Simplicity
paradigm.

 Concluding with yet another definition of systems engineering, a seman-
tically loaded one which seems to cover area of activity bounded by the
HKMF (Chapter 12).

18.1 The various definitions of the word “system”
The word “system” means different things to different people. For example,
Webster's dictionary contains 51 different entries for the word “system”
(Webster, 2004). Consider the following representative sample of defini-

2005

Chapter 18 Reducing and managing complexity

242

tions of the term taken from various sources from the last forty years:
 An array of components designed to accomplish a particular objective

according to a plan (Johnson, et al., 1963).
 A set of concepts and/or elements used to satisfy a need or requirement

(Miles, 1973).
 An assemblage or combination of components or parts forming a com-

plex or unitary whole (Blanchard and Fabrycky, 1981).
 A number of elements and the relationships between the elements

(Flood and Jackson, 1991).
 A set of different elements so connected or related as to perform a

unique function not performed by the elements alone (Rechtin, 1991).
 Consists of three related sets, a set of elements, a set of interactions

between the elements, and a set of boundary conditions (Aslaksen and
Belcher, 1992).

 Any process or product that accepts and delivers outputs (Chapman, et
al., 1992).

 The model of a whole entity; when applied to human activity, the model
is characterised fundamentally in terms of a hierarchical structure,
emergent properties, communication and control. An observer may
choose to relate this model to real-world activity. When applied to nat-
ural or man-made entities, the crucial characteristic is the emergent
properties of the whole. (Checkland, 1991).

 A network of interdependent components that work together to try to
accomplish the aim of the system (Deming, 1993).

 A group of elements dynamically related in time according to some co-
herent pattern (Beer, 1994) page 7). Both the nature and purpose of
the System are recognized by an observer within his perception of what
the system does. Using this approach, models may be constructed to
represent the System being studied.

 The object of study, what we want to discuss, define, analyse, think
about, write about and so forth (Kline, 1995).

 Any organized assembly of resources and procedures united and regu-
lated by interaction or interdependence to accomplish a set of specific
functions. (FS-1037C, 1996)

 A collection of personnel, equipment, and methods organized to ac-
complish a set of specific functions (FS-1037C, 1996).

 A set of related components that work together in a particular environ-
ment to perform whatever functions are required to achieve the sys-
tem’s objective (Dewitz, 1996) page 5).

 A set of integrated end products and their enabling products (Martin,
1997) page 17).

 A collection of interrelated components that work together to achieve
some objective (Sommerville, 1998) page 24).

Chapter 18 Reducing and managing complexity

243

 An interdependent group of people, objects, and procedures constitut-
ed to achieve defined objectives or some operational role by performing
specified functions. A complete system includes all of the associated
equipment, facilities, material, computer programs, firmware, technical
documentation, services, and personnel required for operations and
support to the degree necessary for self-sufficient use in its intended
environment (IEEE 1220, 1998).

 An entity designed to function so as to achieve an objective
(Westerman, 2001) page 5).

 An integrated set of elements that accomplish a defined objective
(INCOSE, 2002). INCOSE then adds, “People from different engineering
disciplines have different perspectives of what a “system” is” (INCOSE,
2002).

 A combination of interacting elements organized to achieve one or
more stated purposes (Arnold, 2002).

 A bounded object which is capable of responding to external stimuli,
and in response to external stimuli a system’s internal components in-
teract with each other to produce internal and external effects (Scuderi,
2004).

These definitions contain or imply the following minimum set of com-
mon elements:

 An external environment or containing system;
 An external boundary;
 Internal components;
 Relationships between the components;
 Inputs;
 Outputs.

The minimum set of common elements can also be represented by the
generic diagram shown in Figure 18-1 which represents the creation of the
system by taking an area of interest and drawing a boundary around that
area such that anything inside the boundary becomes part of the system and
partitioning the area inside the boundary into subsystems or components
(Jackson and Keys, 1984). Note that Figure 18-1 does not refer to other at-
tributes of systems mentioned in the definitions including emergent proper-
ties, purpose, and objectives.

If Figure 18-1 represents the system as defined in various ways, the
question arises, why are there a number of different definitions? The differ-
ent definitions seem to be a result of the way people view problems. Thus
the first hypothesis in this Chapter postulates that each definition is a formu-
lation of a problem.

Chapter 18 Reducing and managing complexity

244

Figure 18-1 Generic representation of a system

Figure 18-1 however, is only a simple representation of the area of in-
terest. Each component may in itself consist of components; hence the
components tend to be known as subsystems. Furthermore, the representa-
tion in Figure 18-1 assumes that external elements can be ignored for the
purpose for which the system was constructed. This assumption is not nec-
essarily true as we continue to discover sometimes to our detriment. For
example, in some land areas, pumping subsurface water to the surface low-
ers the level of the underground water table, which is not replenished by
surface water seeping down after rainfall as was initially postulated, but in-
stead results in salt water from a nearby ocean seeping sideways into the
water table to maintain the level. What’s more, these external effects may
show up with various time delays ranging from fractions of seconds to longer
than centuries (Chapter 13). Thus we change the boundaries of the system
to incorporate external elements, initially considered as not having an effect
on the system of interest, as and when we discover that they do in fact have
an effect. The more we add to the system the more complex the system
becomes.

A more generic representation of a system which includes the effects of
components in or adjacent to the area of interest that affect the system is
shown in Figure 18-2. Figure 18-2 reminds us of Kline’s dictum that the sys-
tem is only a representation of the real world (Kline, 1995), or in today’s ob-
ject-oriented parlance, an abstraction or a view of the real world. Kline uses
the term ‘Sysrep’ to reflect this situation and reserves the term system to
describe the area of interest from which the Sysrep is created.

Chapter 18 Reducing and managing complexity

245

Figure 18-2 A more realistic representation of a system which takes ex-
ternal effects into account

18.2 Complexity is a function of poor internal boundaries
Jackson and Keys wrote “the classification of a system as complex or simple
will depend upon the observer of the system and upon the purpose he has
for constructing the system” (Jackson and Keys, 1984). There seem to be
two types of complexity as follows:
 Real world complexity - in which elements of the real world are related

in some fashion, and made up of components. This complexity is not
reduced by appropriate abstraction it is only hidden.

 Artificial complexity – arising from either poor aggregation or elements
of the real world that, in most instances, should have been abstracted
out when drawing the internal and external system boundaries, since
they are not relevant to the purpose for which the system was created.
It is this artificial complexity that gives rise to complication in the man-
ner of Rube Goldberg or W. Heath Robinson. For example, in today’s
paradigm, complex drawings are generated that contain lots of infor-
mation70 and the observer is supposed to abstract information as neces-
sary from the drawings. The natural complexity of the area of interest is
included in the drawings. Hence the system is thought to be complex.

70 DODAF Operational View (OV) diagrams can be wonderful examples of artificial
complexity.

Chapter 18 Reducing and managing complexity

246

Maier and Rechtin recommend that the way to deal with high levels of
complexity is to abstract the system at as high a level as possible and then
progressively reduce the level of abstraction (Maier and Rechtin, 2000) page
6). However, as they point out:

 Poor aggregation and partitioning during development can increase
complexity (i.e. artificial complexity).

 The concept that a complex system can be decomposed into a single set
of smaller and simpler units omits an inherent characteristic of complex-
ity, the interrelationships among the components (i.e. real-world com-
plexity).

The choice of partitioning is a major factor in the efficacy of any system
description (Aslaksen and Belcher, 1992). Thus optimal subsystem bounda-
ries must be designed for simplicity, namely:

 To abstract (hide) non-relevant information.
 To bound subsystems into self-regulating or self-sufficient entities

with maximal internal cohesion of subsystems and minimal coupling
between them as shown in Figure 14-9.

 That the maximum number of subsystems at any level of decompo-
sition should generally be no more than seven (±2) to comply with
Miller’s Rule to facilitate understanding the system (Miller, 1956).

18.3 Cognitive filters
The process of creating a system should begin with the determination of
which parts of the real-world area of interest are pertinent to the situation.
The next step is to abstract out the non-pertinent elements to create the
system or Sysrep. This is the problem formulation process. The abstraction
process uses a filter to separate the pertinent from the non-pertinent. This
filter is known as a “cognitive filter”. Cognitive filters are filters through
which we view the world. They include political, organizational, cultural, and
metaphorical, and they highlight relevant parts of the system and hide (ab-
stract out) the non-relevant parts.

Thus the various definitions of the word ‘system’ reflect views of prob-
lems through different cognitive filters by the creators of the definitions,
namely systems engineering in the manner of Wymore who writes that sys-
tems engineers are problem starters (Wymore, 1993) page 2). Moreover,
once systems are defined they take on a life of their own. Forgotten is the
reason for which they were created, and subsequent problems are viewed
through the same cognitive filter, and, since these new problem situations
may not exactly fit the cognitive filter, the problems are adjusted to fit the
filter, namely the solution defines the need.

Chapter 18 Reducing and managing complexity

247

In some instances, cognitive filters can also add material that hinders
solving the problem71. For example, the paradigm that requires the pres-
ence in a system of the following two characteristics (emergence and pur-
pose) that were not shown in Figure 18-1 is a cognitive filter.

18.3.1 Emergence

Checkland and Scholes in a discussion on systems thinking state that “a
complex whole may72 have properties which refer to the whole and are
meaningless in terms of the parts which make up the whole. These are the
so-called emergent properties” (Checkland and Scholes, 1990) pages 18-19).
Emergent properties can be intentional and unintentional (Watts and Mar,
1997). There seem to be three types of emergence:
 Undesired – functionality performed by the system that is undesired,

also known as ‘side effects’.
 Serendipitous – beneficial and desired once discovered, but not part of

the original specifications.
 Desired – being the purpose of the system and can only be achieved by

the combination of the subsystems or components. This is a reworded
version of Rechtin’s definition of a system (Rechtin, 1991) quoted in Sec-
tion 18.1. Examples of desired emergent properties are the functionali-
ty performed by the system, system reliability, system weight, system
safety, and system usability. Note the use of the word “system” in each
of the examples because they refer to a value that can only be achieved
by the system as a whole.

Figure 18-1 and Figure 18-2 do not contain an explicit element that rep-
resents ‘emergence’ or ‘emergent properties’. Checkland and Scholes in
introducing the concept of emergent properties in a discussion on systems
thinking twice state that a complex whole may73 have emergent properties
(Checkland and Scholes, 1990) pages 18, 19 and 25). Emergence is a charac-
teristic of the system, thus the notion (or requirement) that systems must
have emergent properties is a cognitive filter74. Systems without emergent

71 For example, the differences between the Catholics and Protestants in Northern
Ireland are major to many of the inhabitants of the country, but are hardly noticeable
to most of the rest of the world.
72 Note the use of the word “may”, not “must”!
73 This author’s emphasis of the word “may”.
74 Consider this example of the cognitive filter in action. While researching this Chap-
ter I pointed out to a colleague that the original Checkland and Scholes texts on
emergent properties quoted above used the term “may” not “must”. There was a
pause, a blank look, and then the shutters seemed to come down behind the eyes.

Chapter 18 Reducing and managing complexity

248

properties can be represented graphically in the following manner. The sys-
tem boundary defines the functionality of the system. This functionality is
mapped onto components (subsystems) as part of the design process in cre-
ating the physical system as shown by the coloured areas in Figure 18-3.
However, some of the functionality may be a result of the emergent proper-
ties of the system. This can be represented in a geometric format as:

Figure 18-3 Properties of a system

 Functionality = Area of system.
 Area of system = (sum of functionality of all components + area of sys-

tem not in a component).
 Area of system not in a component = emergent properties.

Figure 18-4 Representation of a system without emergent properties

My colleague restated “systems must have emergent properties to be considered
systems!” End of conversation.

Chapter 18 Reducing and managing complexity

249

The emergent properties lie within the area of the system outside the
components or subsystems. By moving the boundaries of the subsystems
(incorporating more capability or functionality into the subsystems) the sys-
tem could also be drawn such that there are no gaps between components
as shown in Figure 18-4 and hence produce a representation of a system
without any emergent properties.

18.3.2 Purpose

Some systems don’t have a purpose that we know of. For example, what is
the purpose of the solar system? Thus the notion that systems must have a
purpose likewise is a cognitive filter. Purpose can be considered as desired
emergence as stated above. For example, a system containing four walls
and a roof is a dwelling. Each component cannot perform the function of a
dwelling on its own. The capability to function as a dwelling is the emergent
property of the system made up by the walls and roof. It is also the purpose
of the system. The purpose is not in the system, it is in the mind of the per-
son drawing the boundary that creates the system because people draw
boundaries (Churchman, 1979) page 91).

18.4 Introducing Simplification
This Chapter now hypothesizes that unnecessary excessive complexity is
incurred by fitting a solution to a problem by the process of adjusting the
area of interest in the real world to fit the cognitive filter75. Recognising that
excessive complexity is a symptom of an underlying problem within the
foundation of the current paradigm (Chapter 3), this Chapter proposes that
what needs to be done is instead of fitting a solution to the problem, and
creating a single (complex) system, we need to formulate the correct prob-
lem correctly and create an appropriate set of simple systems (from differ-
ent viewpoints) as described below.

Consider the perspectives shown in the modified representation of a
system in Figure 18-5. Aslaksen writes, “Our choice of boundaries and inter-
actions depends on what we are trying to understand and what we, as engi-
neers, want to achieve by this understanding, so that system definitions are
inherently subjective. In effect, defining a system is the first step in creating
a model of some part or aspect of reality” (Aslaksen, 2004).

The internal view shown in Figure 18-5 represents the “you can’t see the
forest for the trees” aphorism as well as demonstrating the reason for
Kline’s assertion that “neither the top-down synoptic view nor the bottom-up

75 This process is also known as “pattern matching” in the parlance of the object-
oriented software paradigm.

Chapter 18 Reducing and managing complexity

250

reductionist view can, by itself, supply reasonable understanding of systems
with hierarchical structure incorporating interfaces of mutual constraint and
multiple levels of control” (Kline, 1995).

Figure 18-5 Internal and external views of a system

Furthermore, it shows that a complete view of any part of the system
cannot be obtained from any single viewpoint inside or outside the system.
Thus the use of internal views without any external views does not provide a
complete understanding of a system and can lead to unnecessary complicat-
ed solutions to the wrong problem.

For example, consider the hierarchical view of a Meta-system shown in
Figure 18-6. When one of its subsystems, System B, is viewed externally
from above, it is seen to be made up of three sub-systems. Yet when the
three sub-systems of the Meta-System (Systems A, B and C) are viewed in-
ternally and externally from a horizontal viewpoint, the horizontal view
through the subsystems is commonly referred to as a System of Systems.
Since the process of constructing systems from sub-systems ranges through
many levels of hierarchy (from sub-atomic particles, though atoms, mole-
cules, etc. all the way up to the universe), the complexity assumed for Sys-
tems of Systems seems to be a direct result of the lack of external views of
the system comprising the Systems enclosed in a boundary now defined as a
System of Systems (and the high degree of coupling (interaction) between
the subsystems). These external views are also at a higher hierarchical level
than the component of the system, and must also be via various appropriate
cognitive filters. Moreover, each filter must provide a view (information)
that does not overlap the information provided by the other views. Thus in
order to obtain a complete understanding of a system, there must be a
number of internal and external viewpoints such that:

Chapter 18 Reducing and managing complexity

251

Figure 18-6 Hierarchy of systems

 Each is separated in the space domain, so that no relevant part of the
system is hidden and,

 Each is simultaneous or synchronized in the time domain.
 Moreover, if the behaviour of a system over time is being examined, a

series of simultaneous space-separated, time synchronous views are re-
quired in order to obtain an understanding of the system.

18.5 Yet another definition of the term “system”
This Chapter now proposes a semantically loaded definition of the term ‘sys-
tem’ that incorporates the hypotheses of this Chapter, namely:

A system is an abstraction from the real world of a set of objects, each
at some level of decomposition, at some period of time, in an arbitrary
boundary, crafted for a purpose.

Consider the implications of the terminology used in the definition.

 Abstraction - used in its object-oriented meaning to remind us that a
system is not the real world, but is Kline’s Sysrep and must always be
viewed in that context.

 A set of objects - the components of the system.
 Each at some level of decomposition - each component may itself be an

aggregate of components.
 At some period of time - not only do the system and its components

have to be considered at the same period of time (Beer, 1994), but con-
sideration has to be taken into account that the area of interest repre-
sented by the system may change over time.

 In an arbitrary boundary - the boundary is crafted by the observer to
enclose a section of the real world (Jackson and Keys, 1984). The word

Chapter 18 Reducing and managing complexity

252

arbitrary is used because the boundary may appear arbitrary to other
entities until the purpose for drawing the boundary is understood. The
act of drawing an external boundary implies a containing system, so the
concept of hierarchies is built into the definition. The act of drawing in-
ternal boundaries or partitioning the system defines the components or
subsystems. The choice of partitioning is a major factor in the efficacy
of any system description (Aslaksen and Belcher, 1992).

 Crafted for a purpose - this is the part of the definition that really
changes things. The system does not have to have a purpose. The
boundary is defined by the purpose for which it is drawn in the mind of
the observer as implied in the definition of a system by (Beer, 1994)
quoted in Section 18.1.

18.6 Perspectives
This definition introduces new possibilities, currently being researched,
some of which are discussed below.

18.6.1 Bridging the gap between hard and soft systems

The definition of a system proposed above seems to include or cover the
various definitions of the term ‘system’ listed above obtained from the hard
and soft systems literature. If this statement is correct, and the definition
can cover most, if not all, of the other existing definitions of systems, then
this new definition applies to both hard and soft systems and could serve as
a baseline for bridging the gap between hard and soft systems.

18.6.2 Open systems

Inputs and outputs cross system boundaries when the purpose of drawing
the system boundaries has to do with the inputs, outputs, and the internal
elements inside the system boundary. This is the traditional textbook open
system.

18.6.3 Closed systems

The typical textbook examples are (pendulum) clocks and the solar system.
However, the real world does not contain any closed systems. In the real
world, clocks operate in a gravity field and the solar system is bathed in ex-
ternal radiation. However, when a boundary is drawn for the purpose of
developing an understanding of the way the internal components of a clock
or the solar system work together, then these systems can be considered as
closed systems for that specific purpose.

Chapter 18 Reducing and managing complexity

253

18.6.4 Relationships between components

A set of objects does not become a system until a boundary is drawn around
the set by some entity for some purpose. For example, two separate audio
amplifiers on a circuit board do not constitute a system until a boundary is
drawn around them to include them in a stereo system. To repeat, it is the
act of drawing the system boundary that creates the system.

18.7 Simplifying the process of systems analysis
The process of systems analysis is supposed to be a way of simplifying the
complexity of the real world to allow us to manage the area of interest. This
process however, instead of simplifying matters has tended to introduce
complexity. As systems become more complicated (artificially complex) we
add extra layers of control which makes the system even more complicated.
This is a positive feedback situation.

The process of systems analysis starts by creating a system to represent
the area of interest. We do this by abstracting a single system (Sysrep) with
a fixed boundary from a real-world area of interest. Once the system is de-
fined, further views are generated of the system by abstracting out non-
relevant information via various cognitive filters as shown in Figure 18-7.

Figure 18-7 Abstraction process leading to complexity

The complexity needs to be abstracted out when the drawings (Sysreps)
are produced to achieve Simplicity. For example, consider the US Space
Transportation System (Space Shuttle) and the International Space Station
(ISS). Each is a complex system in itself, yet when solving the problem of
docking a Shuttle to the ISS, all the underlying complexity that is not relevant

Chapter 18 Reducing and managing complexity

254

to the docking problem is abstracted out. Thus, we construct a closed sys-
tem to simplify the problem by abstracting out (filtering out) everything oth-
er than information pertinent to the:

 Relative positions of the spacecraft.
 Relative velocity of the spacecraft.
 Relative alignment in X, Y and Z orientation.

This is an instance of Simplicity. Why can’t we use the same paradigm
elsewhere? We need to learn how to view things differently, namely adjust
our cognitive filters for Simplicity not Complexity.

In object-oriented parlance, the real world is a data source; we deal with
abstracted views of that data source. One specific view does not fit all pur-
poses. The use of one specific system (view) for all purposes introduces un-
necessary complexity, since we have to fit all activities to that one view.

Abstracted views are systems. Why not just abstract multiple views to
help with the purpose directly from the real-world area of interest? Each
abstracted view can be kept simple to facilitate its purpose, and a number of
abstracted views will be needed for a complete understanding of the area of
interest. For example, the different views of the SDLC in Figure 9-1 and Fig-
ure 5-2 abstract out the pertinent information that is relevant to the aspect
of the SDLC being discussed in association with the Figure. In the world of
Simplicity, there is no such thing as a (single) system that represents an area
of interest. There are instead a number of systems, each of them dealing
with some aspect of the area of interest in the manner shown Figure 18-8.
Consider the examples of a rock, a camera and a human being.

Figure 18-8 Abstracting various views directly from the area of interest

Chapter 18 Reducing and managing complexity

255

18.7.1 A rock

As an example, consider the investigation of a rock. The system boundary is
drawn at the surface. While determining the nature of the rock, various
views can be used including:
 Sight – one looks at its colours.
 Taste – taste might give us some information about the chemicals in the

rock.
 Weight/mass – might tell us something about its composition.
 Touch – the surface texture might be of interest.
 Chemical analysis – the components might be of interest.
 Radiation – could tell us something

Each view provides information that the others do not, helping to build
up a complete understanding of the nature of the rock.

18.7.2 A camera

Consider a camera. When we consider the device that takes the photo-
graph, we draw the system boundary around the camera. However, when
we consider the act of taking the photograph the boundary is redrawn to
include the photographer. When considering transporting the camera the
boundary is drawn to include the transportation elements. Developing one
representation that includes all the elements for photographing and trans-
portation and then requiring the elements under consideration for a specific
situation to be abstracted out of the representation, creates unnecessary
complexity. The three separate simpler views, abstracted out of the real
world are simpler for understanding the various aspects of the use of a cam-
era in photography.

18.7.3 A human being

Some areas of the real world can only be fully understood by examining the
internal components of the system and observing it in action in its environ-
ment. Consider a human being, a biological system. To learn about the in-
teraction between internal subsystems we may have to observe the sample
in action in specific situations and either observe or infer the interaction. To
learn about the internal subsystems we have to dissect a sample of the sys-
tem. Once dissected, an individual example cannot usually be restored to
full functionality. However we have learnt something about the class of sys-
tems it represents which can be applied to other instances (human beings).

18.8 Complexity vs. simplicity
Is the world more complex today than in previous times, or is there just a
perception that it is so due to unnecessary complexity? Within a given area

Chapter 18 Reducing and managing complexity

256

of interest, different people may draw different system boundaries (INCOSE,
2002). In the current paradigm that tends to happen for a number of rea-
sons which include communications failures. In the Simplicity paradigm
most of the reasons might be stated as being due to the use of different
cognitive filters.

“A simple system will be perceived to consist of a small number of ele-
ments, and the interaction between these elements will be few, or at least
regular. A complex system will, on the other hand, be seen as being com-
posed of a large number of elements, and these will be highly interrelated”
(Jackson and Keys, 1984). The complex system seems to be an example of:

1. Poor boundary drawing between the system components (subsys-
tems) since the boundaries should be drawn to achieve high cohe-
sion in any given component and low coupling between the com-
ponents (Ward and Mellor, 1985).

2. The use of a single abstraction (partition of a system into subsys-
tems) for all activities associated with the area of interest instead of
using multiple abstractions as appropriate since at any one time we
are NOT studying all aspects of the area of interest represented by
the system.

System and subsystem boundaries depend on the prerogative of the sit-
uation and are dynamic, not static. Unnecessary and the perception of un-
manageable complexity is a result of the use of a single static system bound-
ary for all purposes. Simplicity depends on the use of multiple views or rep-
resentations of an area of interest and each view abstracting out all the in-
formation not pertinent to the view. This is similar to:

 The concept behind the 26 standard views prescribed for the DODAF
(DoDAF, 2004).

 The use of the wave theory (Huygens, 1690) to explain some aspects of
electro-magnetic radiation and the particle theory (Newton, 1675) to
explain other aspects76.

 A plumber examining the system, replacing a washer and charging $100
for the job. When asked if $100 wasn’t a little bit excessive for replacing
a washer, the response was “replacing the washer cost you one dollar,
the other $99 was the charge for knowing which washer to replace.” In
electronic engineering terms this is a signal to noise filtering problem.
The relevant information is the signal, the remaining information the
noise. A good filter (a combination of knowledge, experience and ex-

76 Mind you this could also form the basis of an argument that there is no underlying
theory of electronic-magnetic radiation.

Chapter 18 Reducing and managing complexity

257

pertise) will abstract out the pertinent information and simplify the
problem.

Note both Simplicity and Complexity can suffer from the problem in
which information pertinent to the system is not abstracted out from the
real-world area of interest (forgotten). Simplicity is an object-oriented ap-
proach and relies on the concept of inheritance of views from the same class
of systems to alleviate this problem. The object-oriented world has taught
us that boundaries are in the mind of the observer. For example, think of
your favourite sports. Picture the game in progress as you look out over the
playing area.

 How many objects can you see? People, bats, balls, clothes, etc.
 How many classes of objects? Sweater is an instance of the class of

clothes; bat and ball are instances of the class of sport equipment,
etc.

 What is the difference between an object and a class?

18.9 Case Study Luz SEGS-1
The LuZ SEGS-1 system (Chapters 11 and 22) also an example of how the use
of a set of different cognitive filters (out-of-the-box thinking) was a major
contribution to a successful project. The initial traditional hardware-
software based design approach was for a conventional central minicomput-
er design. The central minicomputer would act as the human interface to
the system, perform the pointing position calculations for each mirror, and
then control all of the mirrors via a high-speed data link and the LOCs at
each mirror. Ethernet was proposed for the data link, but was still in its in-
fancy in those days, and was expensive. The LOCs would position the mir-
rors based on control information from the central processor, and collect
pointing angle and oil temperature information from each mirror. This de-
sign was complicated and high risk and the future of the start-up company
was riding on meeting the development and installation schedule. Recognis-
ing the futility of the conventional approach, the problem was formulated
differently77. The approach can be stated in several ways:
 Out-of-the-box thinking was employed.
 A pattern match was made to a fleet of earth orbiting spacecraft and a

central ground station. The LOCs were the analogue of the spacecraft
and the central processor, the ground control station. The data flows

77 One example of the benefits of formulating the problem in a different manner was
discussed in Section 4.6.

Chapter 18 Reducing and managing complexity

258

between the LOCs and the central processor were telemetry, tracking
and control data flows.

 An alternative design was chosen employing a different set of cognitive
filters.

The traditional approach drew a boundary between hardware and soft-
ware. The hardware subsystems would interface the mirrors, sensors and
motors to the central processor via simple circuitry in the LOCs; the software
subsystems would reside in the central processor, a minicomputer, and per-
form the control functions.

In this case, the subsystem boundaries were not drawn between hard-
ware and software. An object-oriented functionality-based approach was
chosen instead. The control functionality was distributed throughout the
system in embedded microprocessor firmware as well as in the central pro-
cessor, which meant functionality was replicated in the LOC, situated at each
mirror (in the form of several software components) instead of existing only
in the central processor. The system architecture took the form of self-
regulating systems (LOCs) communicating with the CCS (control element) as
shown in Figure 14-9 and implemented as described in Section 11.8.1. The
rules for drawing the subsystem boundaries were as follows (Kasser, 1999):

 Minimize coupling and maximize the cohesion of the subsystems.
 Consider the operator as part of the system.
 Use self-regulating subsystems.
 Use railroad buffers for signal passing.
 Use a testable software architecture.

Consider each in turn.

18.9.1 Minimize coupling and maximize the cohesion of the subsys-
tems

This approach is based on the Ward and Mellor methodology (Ward and
Mellor, 1985) and fits nicely into both object oriented and conventional de-
sign approaches.

18.9.2 Consider the operator as part of the system

Consider the operator as part of the system - This approach allows early
Builds of a system to perform functions manually, and then provides auto-
mated capabilities in subsequent Builds (either as part of the Build Plan or as
planned upgrades as more is learned about the system’s behaviour). It also
allows subsystems to be coupled in a well-defined and understood manner.
For example, one system may act as “the operator” for a second subsystem.

Chapter 18 Reducing and managing complexity

259

18.9.3 Use self-regulating subsystems

Partition the subsystems to perform as self-regulating subsystems carrying
out its functions in a self-regulating manner. The rules for (minimizing) cou-
pling and (maximizing) cohesion must be observed when partitioning the
subsystems. The subsystem should contain the appropriate feedback cir-
cuits to allow it to perform its task until subsequent instructions are re-
ceived. It transmits status information about itself, and receives command
instructions from other subsystems as shown in Figure 14-9.

18.9.4 Railroad buffers for signal passing

This was a key element to the success of the project. All signals were passed
between processes via buffers at both ends of the interface as shown in Fig-
ure 18-9. Software modules were not allowed to build and transmit mes-
sages on the fly, or react to messages as they are received. The term “rail-
road buffer” is used because the interface area of the software component
(subsystem) looked like a freight yard at a railroad station. This element
allowed modules to be tested in both a static (standalone) and a dynamic
manner. The interface was tested by placing known data in a transmitter
buffer and ensuring the data appearing in the corresponding receiver buffer
was correct after the necessary event which triggered the transfer. The
modules were tested by placing data in the receiver buffer, and initiating the
processing task. The data in the output buffer or the state of the module
was then checked to see it met the specifications for the processing task.
This element has much in common with client-server techniques, but may
cause a small and in most cases an unnoticed loss in performance. These
buffers may also be considered as the software equivalent of hardware test
points.

Figure 18-9 Railroad buffers for signal passing

Chapter 18 Reducing and managing complexity

260

18.9.5 Use a testable software architecture

The software architecture employed in the central processor using the prin-
ciple of controlled self-regulating subsystems passing information via rail-
road buffers was as shown in Figure 18-10. These subsystems were the:
 User interface - The data display and entry device(s) which interacted

with the users. The user interface was developed by a single group
which ensured consistency.

 Algorithm executor - The top-level subsystem which carried out the
work the system was built to perform.

 Database(s) - The database components of the system.
 Operator Window - A window into the system. It displayed all status,

alarm, error and event states, and the contents of buffers.
 External interfaces - The interfaces to the external elements to the sys-

tem.

Figure 18-10 Testable software architecture

The operator interface also served as the major troubleshooting tool
both during system commissioning and operational troubleshooting. By al-
lowing the code produced to display the state of the system during the de-
velopment process to be left in the final product (with appropriate docu-
mentation), this feature reduced the need to develop custom tools to test
portions of the system, hence reducing the cost of the system This architec-
ture is applicable to the generic class of systems that can be built from the
user/operator interface inwards.

18.9.6 Summary so far

In summary, applying systems thinking and viewing the system through sev-
eral different cognitive filters (including an embedded software approach)
instead of the classic hardware-software approach meant that the pointing
functionality was transferred from the central processor to the individual
LOCs. This allowed the planned mini-computer to be replaced by a Z-80
eight-bit microcomputer system costing $2,000, avoiding at least $900,000
in minicomputer hardware and software costs. In addition if the control link

Chapter 18 Reducing and managing complexity

261

failed for a short period of time, the mirrors would continue to point at the
sun and generate heat.

18.10 Redrawing the contractor sub-contractor boundaries
in certain types of Defence contracts

This section contains an example of how redrawing boundaries could simpli-
fy and lower the cost of the Small and Small Disadvantaged Business (SDB)
set asides in the US Government contracting process while retaining the so-
cio-economic benefits to society for certain types of contracts.

18.10.1 Background

The US Federal Acquisition Streamlining Act (FASA) of 1994 established a 5%
Small and SDB Set-Aside goal for civilian agencies. However, the socio-
economic benefits of these goals were hard to achieve for the following rea-
sons.
 By the mid 90’s concerns had been raised regarding the quality of the

products provided by Set-Aside contracts. These concerns were so seri-
ous that the whole Set-Aside program had been questioned. As a result,
the DOD went as far as suspending its (rule of two) SDB Set-Aside pro-
gram in October 1995.

 While the agencies required prime contractors to propose subcontract-
ing plans, overall they did not seem to follow up on the plans and re-
quire compliance. In such circumstances, the plan was an element to be
checked off for the proposal and subsequently forgotten.

 Many Small and SDBs do the same kind of low-capital-cost knowledge-
intensive types of work namely Systems Engineering and Technical As-
sistance, Business Process Reengineering, software engineering, and
operations support activities as the large contractors. Thus when large
companies identify subcontracting partners there tends to be a degree
of overlap between the functions each does on the contract. This over-
lap allows the large prime contractor to squeeze out the subcontractor
as much as possible.

18.10.2 The problem

About 25 years ago, according to the US Small Business Administration
(SBA), studies had shown that small companies were more cost effective and
innovative than large companies78. Since many Small and SDBs perform the

78 In 1982, there were 2.4 times as many small firm innovations as large firm innova-
tions per employee according to the (SBA, 1982)

Chapter 18 Reducing and managing complexity

262

same kind of low-capital-cost knowledge-intensive activities as these large
contractors, they could form strategic alliances in a multiple-award-task-
ordered (MATO) contract environment to compete for these contracts. Such
strategic alliances could:
 Provide the Small and SDB team partners with more work than the

overall Small and SDB set-aside percentage.
 Reduce the need for Small and SDB Set-Asides.
 Reduce the complaints of “unfair” by non SDBs
 Give the Government lower cost work of equal if not better quality than

large companies for these types of contracts.

With these apparent reasons to form strategic alliances, consortiums
and teams, most Small and SDBs still, in general, tended to:

 Attempt to team with large companies in a prime-subcontractor rela-
tionship to meet the contractual Set-Aside requirements.

 Concentrate their marketing efforts on Small and SDB Set-Aside con-
tracts.

The reasons why those strategic alliances were not formed was focus of
doctoral research (Kasser, 1997).

18.10.3 The traditional boundaries

By the mid 90’s the Government had begun to award MATO contracts in an
attempt to obtain quality products at reduced cost by removing the monop-
oly effect present after a single contractor won a multiple year award. The
traditional MATO contract award pool scenario is shown in Figure 18-11.
Several contractors bid on the Government’s RFP and a selected subset qual-
ifies for the award pool. The subset that qualifies then competes for individ-
ual tasks within the contract. Each contractor has its Small and SDB subcon-
tractors as required by the contract. This arrangement:
 Allocated the Small and SDB funding goals in a horizontal manner. The

Small and SDBs are below the large prime contractors in the hierarchy of
the contract.

 Is a way of providing socio-economic benefits to the Small and SDB
community.

 Loads the cost of the contract with the overhead to plan and administer
the regulatory required Small and SDB subcontracts as well as the sub-
contract pass-through costs.

Chapter 18 Reducing and managing complexity

263

Figure 18-11 Multiple award set aside scenario

18.10.4 Redrawing the boundaries

Redraw the organizational boundaries between the contractors from the
horizontal contractor-subcontractor relationship to a vertical structure in
which Small and SDBs joined in a strategic alliance to form a virtual large
contractor with the following contractual changes:
 Make the guaranteed minimum for the procurement equal to the Small

and SDB Set-Aside dollar amount.
 State that one or more awards will be made to a Small or SDB or alliance

thereof.
 Completely remove the Small and SDB subcontract requirements from

the RFP.

In this situation, the Small and SDB arrangement is a vertical arrange-
ment as shown in Figure 18-12 rather than the current horizontal arrange-
ment.

18.10.5 A benefit of the simplicity approach

The vertical arrangement eliminates the:
 Overhead costs to plan and administer regulatory required Small and

SDB subcontracts.
 Subcontract pass-through costs.

The vertical arrangement would also seem to provide the Government
with a win-win situation from two perspectives, namely:

 The Small and SDB perspective.
 The large business perspective.

Chapter 18 Reducing and managing complexity

264

Figure 18-12 Vertical set-aside scenario

Consider each of them in turn.

18.10.5.1 The Small and SDB perspective

Their performance would affect the cost of the contract as follows. If they
were to be:
 Outstanding - Their technical approach and low cost would win them a

larger percentage of the work. The Government would get more value
added for each dollar spent, and the total amount spent on Small and
SDBs would increase, helping the Agency meet its Small Business dollar
goal in a cost-effective manner.

 Mediocre - They would receive the Set-Aside minimum percentage of
the contract and some help in improving their performance.

18.10.5.2 The large business perspective

The cost of work would be lower for the following reasons:
 Proposal preparation costs - By eliminating the need for the large com-

panies to develop a subcontracting plan.
 Contract performance costs - By reducing duplicate management struc-

tures in each company, and eliminating the prime contractor’s subcon-
tract management functions.

In addition, outstanding Small and SDB performance would drive down
the cost of the contract, with no reduction of quality, because either the
Small and SDB capture all the work, or, the large business would have to
improve to remain competitive.

Chapter 18 Reducing and managing complexity

265

18.10.6 Summary and conclusion

Redrawing MATO contract contractor boundaries into a vertical set-aside
approach may be a way to provide the socio-economic benefits to Small and
SDBs without giving up quality or incurring additional costs in carrying out
the Small Business regulations. Implementation of this approach would
however probably require a change to the Federal Acquisition Regulations
(FAR).

18.11 Yet another definition of systems engineering
The word system has been defined above. The American Heritage dictionary
defines the word “engineering” as “The application of scientific and mathe-
matical principles to practical ends such as the design, manufacture, and
operation of efficient and economical structures, machines, processes, and
systems” and “The profession of or the work performed by an engineer”
(American Heritage, 2000).

Thus by combining the two definitions, we have Systems engineering is
the application of scientific and mathematical principles to the abstraction
(from the real world) of a set of objects, each at some level of decomposi-
tion, at some period of time, enclosed in an arbitrary boundary crafted for
a purpose.

This definition of systems engineering states that systems engineering is
an activity, namely the application of scientific and mathematical principles,
and seems to cover all five layers of systems engineering at all points within
the two dimensional space of the HKMF defined in Chapter 12. The defini-
tion does not state anything about the nature or purpose of the “applica-
tion” or the necessity to meet anyone’s needs. To this author, at least, it is
more realistic than a definition that includes goals and purposes. The latter
type of definition is an ideal to be aimed at, and not a pragmatic portrayal of
the real world.

18.12 Summary
This Chapter has discussed ways of dealing with complexity by changing cog-
nitive filters and redrawing boundaries.

18.12.1 The hypotheses

The hypotheses presented in this Chapter can be summarised as:
 The many definitions of a system are formulations of problem state-

ments.
 The process of adjusting the area of interest in the real world to fit the

cognitive filter introduces unnecessary complexity, and recognising that
excessive complexity is a symptom of an underlying problem within the

Chapter 18 Reducing and managing complexity

266

foundation of the current paradigm (Chapter 3); what needs to be done
is to adjust the cognitive filter to view the area of interest and create an
appropriate set of simple systems.

18.12.2 The insights

The insights discussed in this Chapter can be summarised as:
 Systems cannot be totally understood from within the system even if

viewed from a number of internal viewpoints.
 Several orthogonal views from an external (higher hierarchical level)

perspective are also needed to completely understand a system.
 There’s no such thing as a system per se! There’s a map of some area of

interest (aspect of the world) enclosed in a boundary that we call a sys-
tem for convenience (Kline’s Sysrep).

 Systems exist within hierarchies of containing systems.
 The area of interest cannot be separated from the real world.
 Defining the correct internal and external boundaries for the system and

its components is critical.
 Complexity is everywhere but can be abstracted out for specific purpos-

es, namely the way to deal with complexity is by changing the cognitive
filter to a Simplicity paradigm.

 Within a given area of interest, different people may draw different sys-
tem boundaries for different purposes at the same time.

 System boundaries are dynamic, not static, and depend on the preroga-
tive of the situation.

 Attempts to establish and use a single static system boundary for all
purposes results in artificial complexity.

 We do use Simplicity in a few instances, but it is not the current main-
stream paradigm.

 “Complicatability” is the prerogative of the systems engineer.

18.13 Areas for future research
There are a number of areas for future research based on this Chapter in-
cluding the following:
 Hypothesis testing. This Chapter has stated hypotheses based on the

recognition that “excessive complexity is a symptom of an underlying
problem within the foundation of the current paradigm” (Chapter 3) and
personal experience, and extrapolated on possibilities, perceptions, out-
comes and thoughts the hypotheses have generated. Future research
needs to be undertaken to test the hypotheses and investigate the pos-
sibilities discussed in this Chapter.

Chapter 18 Reducing and managing complexity

267

 Determine the Simplicity process. Simplicity is out there in a few situa-
tions. The space station docking scenario and the LuZ SEGS-1 case study
have shown that Simplicity does work. Future research needs to be un-
dertaken to determine the nature of the process or processes for simpli-
fication and its limitations if any, so that Simplicity can become more
widespread. We need to learn how to view things differently, namely
adjust our cognitive filters for Simplicity not Complexity.

 Determine the minimum number of views necessary. Future research
needs to be undertaken to determine the minimum number and types
of internal and external views necessary for a complete understanding
of an area of interest.

Chapter 19 Process architecting

269

19Process	architecting

This Chapter examines the system from the perspective of the work done in
the development of systems. This work is currently split between three in-
dependent and apparently overlapping organisational roles of systems archi-
tecting, systems engineering, and project management, which interde-
pendently produce a product to (the correct) specifications within the con-
straints of resources, budget and schedule. This Chapter first identifies a
reason for the overlapping roles. The Chapter then attempts to resolve the
difficulties in defining the roles of systems engineering, systems architecting,
and project management, and the difficulty in defining the body of
knowledge for systems engineering by identifying a gap in the functions per-
formed by the three organisational roles, when viewed from the perspective
of planning and implementing the development of a system. This gap, which
when filled by the newly defined role of process architecting, has the poten-
tial to bring some order into the current chaos and resolve many if not all of
the current difficulties.

There have been many discussions in the literature about the overlap-
ping of, and differences in, the roles of systems engineering, systems archi-
tecting, and project management (Chapters 2 and 15), as well as the depth
of speciality knowledge required for each of the three roles in the develop-
ment of systems discussed in Chapter 7. For example, according to Roe the
knowledge and skills of systems engineers are the same as those of project
management in the areas of management expertise, technical breadth and
technical depth (Roe, 1995). Roe adds that the difference in application is
that the system engineer has more technical breadth, while the project
manager has more management expertise. Bottomly et al. studied the roles
of the systems engineer and the project manager and identified 185 activi-
ties and their competencies (experience and knowledge) (Bottomly, et al.,
1998). Their findings included:

 No competency was assessed as being purely the province of systems
engineering.

2005

Chapter 19 Process architecting

270

Figure 19-1 Overlapping organizational roles in the development of
systems

 There is no sharp division between the two disciplines (systems engi-
neer and the project manager) even at the level of individuals.

In these discussions, the situation tends to be represented by overlap-
ping shapes as shown in Figure 19-1.

In addition the difficulty in defining the SEBoK has also been discussed in
several places (Chapter 12). As a result of these difficulties, it has been diffi-
cult to separate the content of postgraduate courses in systems engineering,
systems architecting and project management, at least in the Systems Engi-
neering and Evaluation Centre (SEEC) at the University of South Australia
(UniSA), so the current courses contain some overlapping content (although
treated from different perspectives).

This Chapter first identifies a reason for the overlapping roles and then
attempts to resolve the difficulties in defining the organisational roles and
their bodies of knowledge. It does this by looking at the boundaries of the
functions performed by the three organisational roles when viewed from the
perspective of planning and implementing the development of a system and
identifying a gap. When this gap is filled by a new defined role of process
architecting, the four interdependent organisational roles have the potential
to bring some order into the current chaos and resolve many if not all of the
current difficulties.

19.1 The three current organisational functions in the de-
velopment of systems

The task of developing systems is currently split between the three interde-
pendent organisational functions of systems architecting, systems engineer-

Chapter 19 Process architecting

271

ing, and project management which interdependently produce a product to
(the correct) specifications within the constraints of resources, budget and
schedule. These functions are performed by people with various roles. For
the purposes of this discussion, consider the following terminology:
 Roles – the title or job description of a person in an organisation. These

are variations of various job titles such as System Architect, System En-
gineer, and Project Manager.

 Functions – activities performed by a role in an organisation. Some
functions performed by a role in one organisation may be performed by
a different role in another organisation.

Now consider the three interdependent organisational functions of sys-
tems architecting, systems engineering, and project management.

19.1.1 Systems architecting

Systems architecting is defined as “the art and science of creating and build-
ing complex systems. That part of the systems development most concerned
with scoping, structuring, and certification” (Maier and Rechtin, 2000). The
function of the systems architect is to apply architectural methods analo-
gous to those used in civil works. This function is concerned with meeting
the overall client needs, directing the high-level design, focussing on keeping
the interfaces between contractors manageable, and working for the client
to ensure that the resulting system satisfies the client’s expectations, even if
the expectations are not clearly articulated.

19.1.2 Systems engineering

A number of definitions were provided in Table 12-1, which Chapter 18 pos-
tulated were all statements of problems.

19.1.3 Project management

As mentioned in Chapter 2 project management is defined as “the planning,
organizing, directing, and controlling of company resources (i.e. money, ma-
terials, time and people) for a relatively short-term objective. It is estab-
lished to accomplish a set of specific goals and objectives by utilizing a fluid,
systems approach to management by having functional personnel (the tradi-
tional line-staff hierarchy) assigned to a specific project (the horizontal hier-
archy)” (Kezsbom, et al., 1989).

19.2 Mapping the three roles
Given the overlapping nature, and commonality, of the functions performed
by the three roles, no wonder it has been difficult to separate them. For
example, Chapter 2 noted that for any phase in the SDLC, the optimal cost to

Chapter 19 Process architecting

272

perform the phase is the “right mix” of planning and doing, but failed to sep-
arate out activities unique to the functions of systems engineering, since all
the activities identified in that research as pertaining to the functions of sys-
tems engineering overlapped those of the project management functions.
However, that was research was from the perspective of mapping job de-
scriptions onto planning and implementing the development of a system.

19.3 An alternative perspective
Change the viewpoint and consider the situation from the perspective of
planning and implementing the development of a system. While planning
and implementing are common functions to all three roles in all organisa-
tions, the degree of planning and implementing is different at different
points in the SDLC (in general, there tends to be more planning in the early
phases of the SDLC and more implementation in the latter part of the SDLC).
Moreover there is also a distinction between the attributes of the product
being produced and the process that produces it. Thus all the functions in-
volved in the development of systems can be mapped into the quadrants of
a rectangle in which:

Figure 19-2 Mapping organisational functions

 the continua of planning and implementing are at the bottom showing
the change in focus from planning to implementing over time (the SDLC
on the horizontal axis), and

 the product or process attributes of the final system are at the side (ver-
tical axis).

 When the three organisational functions are mapped in this way the
result is as shown in Figure 19-2 in which:
 Product-planning maps onto the functions of systems architecting.

Chapter 19 Process architecting

273

 Product-implementation maps onto the functions of systems engi-
neering.

 Process-implementation maps onto the functions of process engi-
neering or project management.

19.4 Introducing the role of process architect
Figure 19-2 appears to show that the activities (functions) of process-
planning are not, in general, performed by any of the three roles. This is not
always so, in practice the functions sometimes tend to be incorporated in
project management or in the other two roles in an ad-hoc and sometimes
overlapping manner. As such, the tasks involved in project development
during the planning stage of a project tend to be difficult to distinguish from
those performed in project management and hence difficult to explain to
students. If, for the purposes of this discussion, the functions of project
management can be constrained to the process-implementation quadrant, it
can be seen that the area of process-planning in the development of systems
is not covered in Figure, namely a gap has been identified. This Chapter pro-
poses that the gap be filled by a defining a fourth organisational role to:
 institutionalise and organise the process-planning functions;
 help remove the overlaps between the three current organisational

roles;
 resolve some of the difficulties in teaching the roles; and hence
 clarify the bodies of knowledge for each of the roles.

Figure 19-3 The Roles Rectangle

This Chapter also proposes that the name of the fourth role be Process
Architect as shown in the Roles Rectangle of Figure 19-3 which can be used
to show how the four organisational roles reinforce each other as follows:

 System architecting - responsible for the architecture of the system that
will be produced;

Chapter 19 Process architecting

274

 System engineering - responsible for the technical implementation of
the design;

 Process architecting - responsible for the process that will produce the
system; and

 Project management - responsible for managing the implementation of
the process.

The difference between process architecting and project management
may now be summed up as follows. Project management manages the im-
plementation of the specific goals and objectives of the project (Kezsbom, et
al., 1989) described by the WBS, and the Gantt and PERT charts, while pro-
cess architecting is the creation of the initial (high-level) version of the WBS,
the Gantt and the PERT charts used by the project manager.

In general it can also be said that the process and system architecting
functions cover more than a single project because both product and devel-
opment process systems must be architected to be compatible with their
adjacent systems (Chapter 11), while the system engineering and project
management functions tend to be limited to a single project since they are
(inwardly) focussed on the completion of their systems.

19.5 The role of process architecting
The functions performed by the process architecting role are not new, they
are being, or should be, performed in organisations. For example, Sheard
discussed many of these functions (Sheard, 2003), and in a Case Study of a
requirements elicitation and elucidation project performed in 1989, Kasser
and Mirchandani stated “During the course of this task, we thought of the
systems engineer as the project expert who ensures that the process is opti-
mally planned and implemented during the course of the project lifecycle
(Kasser and Schermerhorn, 1994a). Thus not only did we perform the organi-
zational role of systems engineering in determining the requirements for the
MCSS, we also performed the organizational role of systems architecting
(Maier and Rechtin, 2000) in developing the candidate architectures for the
MCSS, and the role of process architecting in developing the transition plan”
(Kasser and Mirchandani, 2005).

This Chapter uses the Roles Rectangle to associate the functions of pro-
cess architecting into the role of Process Architect. The following subset of
the functions performed by the role of the process architecting are de-
scribed in this section.

 Process design
 Process improvement
 Process change agent
 Ensuring standards and CMM compliance

Chapter 19 Process architecting

275

 Keeper of the flame
 Business process reengineering
 Workflow analysis

19.5.1 Process design

The major organisational function of process architecting is to design, set up,
and continuously optimise, the process for the development of the specific
system being produced by the specific organisation over the specific time
period of the SDLC to optimise productivity. ISO 15288 provides a useful list
of processes for tailoring to the specific needs of a development organisa-
tion (Arnold, 2002). Moreover, since a process is in itself a system the pro-
cess architecting function will use the systems engineering approach to pro-
duce the process. As NASA’s systems engineering handbook stated “Total
Quality Management (TQM) is the application of systems engineering to the
work environment” (NASA, 1992b). This is not so surprising because many of
the tools used for TQM are the same as for systems engineering, but with
different names as NASA’s systems engineering handbook stated “Statistical
process control is akin to the use of technical performance and earned value
measurements” (NASA, 1992b). Once the initial development process is de-
signed it is turned over to the systems engineering and project management
functions to construct the system.

Now there are a range of methodologies for use in the development of
systems (Avison and Fitzgerald, 2003), the traditional waterfall methodology
being only one of them. Each methodology fits specific scenarios; however
the real world tends to be more complex than the scenarios taught in the
classroom. “Real world problems do not respect the boundaries of estab-
lished academic disciplines, nor indeed the traditional boundaries of engi-
neering” (O'Reilly, 2004). Thus the optimal development process:

 will probably not be a straight-forward unmodified out-of-the text book
methodology;

 is as important to the success of a product development as is the opti-
mal architecture of the product; and

 is a multi-phased time-ordered sequence of activities (Chapter 13) with
constraints on the start dates for each activity.

The WBS for the process looks like a hierarchical system-subsystem view
of the product. However, little attention seems to have been paid to archi-
tecting optimal development processes and consequently, an untailored
process may not be optimal in a specific situation. This organisational func-
tion of process architecting is to identify the best methodology for the situa-
tion and then tailor that methodology to create an optimal process for the
situation. To make the function more complex, the best methodology and
optimal implementation may be different at different phases in the SDLC or

Chapter 19 Process architecting

276

the situation may be such that there is no one optimal methodology and
parts of several methodologies may be to be assembled into the methodolo-
gy for the project (Chapter 13). The methodology must be tailored to the
situation, not the other way around. Once the methodology is chosen, the
process for implementing the methodology must be developed. The choices
faced by the process architecting function include:

 Choice of lifecycle – such as the traditional requirement driven meth-
odology or a capability driven methodology.

 Choice of methodology – such as (which) soft-systems, functional, ob-
ject-oriented, waterfall, rapid, spiral, cataract etc.

 Choice of process for implementing the methodology, milestone pro-
cess-products and the checkpoints within the process. The process
must be scaled to the size of the project. Sometimes this may require
combining activities or products, e.g. combining the operations concept
with the systems requirements documents for small projects, or even
choosing to produce milestone documents in the form of PowerPoint
presentations instead of text mode documents.

 Build – buy decisions. The decision to build or buy components of the
product affects the development process as well as the product archi-
tecture. This decision must be made after considering its implications
on both the product system and development process.

19.5.2 Process improvement

The process architecting function is responsible for monitoring and improv-
ing the process. Process improvement should be performed by persons out-
side the process, but intimately acquainted with it (Kasser, 1995). The out-
sider is important because apart from the different perspectives they bring,
those involved in the process generally are too busy to spend any time im-
proving the process, and if they are not too busy, they generally are not
open to change. The process architecting function is that of the Quality
Guru as far as the development process is concerned.

Process improvement however, is more than just applying process
standards. Process standards document observed activities that have led to
successes. The Standards need to be tailored to suit the specific project in
the specific organisation at the specific time. Process architects need to
know when to go by the book and when to write the book since the litera-
ture on excellence has little if anything to say about the CMM (Peters and
Waterman, 1982; Peters and Austin, 1985; Rodgers, et al., 1993). The litera-
ture discusses the need for knowledgeable people to get things done. When
going from chaos to order an improvement will usually be observed. That
takes you to CMM Level 5 or to ISO 9000 compliance, but what then? Stand-
ing at the bottom of the process improvement mountain you only see the
foothills leading to the plateau at Level 5 as shown in Figure 19-4. Level 1 is

Chapter 19 Process architecting

277

categorised by having success achieved by heroes. Levels 2-5 discourage
heroes and focus on orderly processes. It will take heroes working within
the organised organisation structure to effect further improvements beyond
Level 5 and improve your competitive edge. Companies don’t want employ-
ees who can follow rules; they want people who can make the rules
(Hammer and Champy, 1993) page 70). Winning (world-class) organisations
need to focus on individual excellence and reward individuals for their
achievements and the risks that they are willing to take (Harrington, 2000).

Figure 19-4 The process improvement mountain

19.5.3 Process change agent

Changes to the process may become necessary during the implementation
phase of the SDLC. These changes arise for various reasons including the
necessity to reduce time to market, major changes in the product specifica-
tions, and changes in the resources available for the development process
(new resources become available or reserved resources become unavailable,
or a combination of both). In this scenario, the process architecting function
redesigns the methodology for producing the product, the analogy in the
product arena is responding to changes in product requirements. This func-
tion requires close cooperation with the other three organisational func-
tions.

19.5.4 Ensuring Standards and CMM compliance

The process architecting function has the organisational responsibility of
ensuring compliance to the various standards such as ISO 15288 (Arnold,
2002) and the CMM appropriate to the development, or mandated by the
customer. Should the organisation not be complaint, and need to become
so, the process architecting function designs the compliant process and the

Chapter 19 Process architecting

278

transition approach (Chapter 4 and 6).

19.5.5 Keeper of the flame (process)

This is the function of responsibility for knowledge management and learn-
ing within the organisation for process related matters including,
 management of process related lessons learned on various projects by

documenting them and making them available for subsequent projects;
 defining process-related training needs;
 a knowledge of applicable government and other regulations and stand-

ards to which the process must conform; and
 ensuring that all appropriate supply chain requirements79 are levelled

on the product design (using the object-oriented concept of inher-
itance). In the Defence industries, an example of a supply chain re-
quirement is the need to ensure that pre-assembled equipment de-
signed for use on a submarine will fit through the entry hatches at in-
stallation time. In the commercial arena, it may have to do with storage
requirements, packaging requirements, third-party installation require-
ments, ensuring that shipping containers will fit on the vehicle, etc.

19.5.6 Business process reengineering

This is a process architecting function. In fact the process architecting func-
tion should be responsible for designing the structure of the organisation in
which the development system exists in accordance with the ISO 15288
standard (Arnold, 2002).

19.5.7 Workflow analysis

This is a process architecting function. The goal is to analyse the workflows
identify the optimal methodology and design the best process for the situa-
tion.

19.6 Interdependence in the Roles Rectangle
The two dimensions of the Roles Rectangle provide a simplified representa-
tion of the four organisation functions (not the roles with similar names)
from the perspective of planning and implementing the product and the
development process producing the product. Each architecting function
requires knowledge of the functions of both implementation functions since
for example:

79 A category of missing requirements in many instances.

Chapter 19 Process architecting

279

 Product - there is little pointing designing a product that cannot be pro-
duced either because the specifications are unachievable (i.e., require-
ments to travel faster than the speed of light are not achievable with
today’s technology).

 Process- there is little point in setting schedules that are not feasible
due to lack of resources, or time.

In addition, each implementation function also uses some planning.
Moreover, each quadrant in the Roles Rectangle contains the functions per-
formed by the speciality disciplines. For example, Eisner describes 38 speci-
ality disciplines in systems engineering alone (Eisner, 1988). Some of these
disciplines are present in the other three quadrants. For example risk man-
agement is a function that has attributes in all four quadrants. The Roles
Rectangle can be used to show that risk management should be applied in all
four quadrants, and the nature of risk management in each quadrant can be
identified using planning and implementing as a starting viewpoint. The
bodies of knowledge in courses teaching risk management can be organised
according to the quadrants of the Roles Rectangle.

19.7 Mapping the organisational functions to the organisa-
tional roles

If there was a one-to-one mapping of the roles to the functions, then there
would be little discussion as to the differences between roles of the systems
engineer and the roles of the project manager. All the functions in the sys-
tems engineering quadrant would be performed by the systems engineer,
and all the functions in the project management quadrant would be per-
formed by the project manager. It is when the boundaries of a role, as de-
fined by the job description, contain functions in another quadrant that dis-
cussions arise.

Figure 19-5 Role of systems engineer in one organisation

The work in developing systems is interdisciplinary. It incorporates a
large number of engineering, management, and other functions that have to

Chapter 19 Process architecting

280

be performed (e.g. requirements management, design, decision making,
problem solving, validation and verification, test and evaluation, risk man-
agement, reliability, and logistics, process design and improvement, etc.)
(Watts and Mar, 1997). In small projects, one person might perform all the
functions. On larger projects, the functions tend to be grouped (slightly)
differently in different organisations in different jobs that are not exactly
aligned with the organisational functions. Thus a systems engineer’s job
does not exactly align with the functions of systems engineering. As both
Roe and Sheard noted, a systems engineer can perform some systems engi-
neering functions and also perform some project management functions
(Roe, 1995; Sheard, 1996). They can also perform architecting functions, yet
the job description is “Systems Engineer”. However, in a different organisa-
tion, the partition of work into different jobs is also not exactly aligned with
the organisational functions but in a different way. This means that in dif-
ferent organisations, the partition of work between the jobs of Systems En-
gineer, Project Manager, and Systems Architect will probably be different.
Thus the same person known as a “Systems Engineer” or an “Engineering
Specialist” might perform a different subset of systems engineering, project
management, and systems architecting when moving from one organisation
to another as shown in Figure 19-5 and Figure 19-6, by the different overlap
of their roles (the activities they do or functions they perform) into the four
(defined by name) activity rectangles but the same job names are used, e.g.
“Systems Engineer” and “Engineering Specialist”. This situation means that
in any one organisation, in general, the roles performed by the jobs of sys-
tems engineer, systems architect and project manager while they do not
map directly into their corresponding function rectangles, also do not over-
lap each other’s roles (unless there is a turf war in progress). The functions
only overlap job roles when compared across different organisations.

Figure 19-6 Role of system engineer in another organisation

Chapter 19 Process architecting

281

19.8 Traits for a process-architect
The traits for a process architect can be identified by building on those for
the systems engineer. Arthur D. Hall provided the specifications or traits for
an “ideal systems engineer” (Chapter 2), other skills and knowledge can be
identified such as those discussed by Watts and Mar (Watts and Mar, 1997).
The specifications or traits for process-architecting are basically the same
but in the methodology and process domain rather than in the application or
product domain. Thus an understanding of the methodologies described by
Avison and Fitzgerald (Avison and Fitzgerald, 2003) and when each should be
used, or similar knowledge, would be a fundamental requirement. Moreo-
ver, as stated above, an effective process architect must have some under-
standing of, and experience in, the functions performed in the other quad-
rants of the Roles Rectangle.

19.9 Summary
The job description (role) of a systems engineer, in general does not map
directly into the functions of system engineering in the work of developing
systems. Similarly the job descriptions (roles) for project managers and sys-
tems architect do into map directly into the functions of project manage-
ment and systems architecting. Since, in general, the jobs (roles) overlap
when compared across different organisations, because the boundaries of
the job functions allocated to the jobs are different in different organisa-
tions, confusion has arisen as to the differences between the responsibilities
of the job descriptions and the functions.

The role and function of process architecting has been introduced as a
way to resolve these difficulties in differentiating between the roles of the
systems engineer, system architect, and project manager, and the functions
of systems engineering, system architecting, and project management in the
development of systems across organisations. The use of the Roles Rectan-
gle which views the development of systems from the perspective of the
difference in the degree of planning and implementing over the SDLC and a
distinction between the product being produced, and the development pro-
cess producing the product, portrays the roles and functions in a simplistic
manner which clarifies the roles at a conceptual high level. However, it must
not be forgotten that the functions performed in the speciality disciplines
are embodied in each of the roles. Yet when discussing the speciality disci-
plines with respect to the Roles Rectangle, the aspect of the discipline asso-
ciated with each rectangle can be readily identified.

19.10 Conclusions
The introduction of the Roles Rectangle makes it easier to define the organi-

Chapter 19 Process architecting

282

sational roles of the systems engineer, system architect, and project manag-
er, and the functions of systems engineering, systems architecting, and pro-
ject management, as employed in the development of systems by adding the
fourth role of process architect and identifying the functions of process ar-
chitecting. The use of the Roles Rectangle assists in:
 teaching about the arrangement of work in the development of sys-

tems,
 understanding the organisational roles by which work is partitioned, and
 the mapping of job descriptions into those roles.

Consequently it provides a way to partition knowledge across a number
of courses on systems engineering and project management with less over-
lap than in the current syllabus.

Lastly, the role of systems engineering in the development of systems is
more clearly and tightly scoped. This sets a boundary for the SEBoK fo-
cussed on the product-implementation phases of the SDLC, which can be
used in a certification program for systems engineers (Chapter 7).

Chapter 20 Eight deadly defects

283

20Eight	deadly	defects	in	systems	
engineering	and	how	to	fix	them

There is a growing trend towards the adoption of systems engineering in the
belief that systems engineering has the ability to perform the acquisition and
maintenance of the systems that underpin our society. Examples include:
 The health care industry in the US has failed to adopt systems-

engineering tools and new technologies that could significantly improve
the safety and quality of medical products and services while also lower-
ing costs (Reid, et al., 2005).

 The US DOD has mandated the use of a “robust systems engineering
approach,” although with little definition of what this means (Wynne,
2004) as quoted by (Honour and Valerdi, 2006).

Any organization wanting to adopt or improve systems engineering
needs to be aware that research into the nature of systems engineering has
shown that when viewed from an external perspective, systems engineering
as currently practiced, contains a number of defects (Kasser, 2006). These
defects inflate the cost of acquiring and maintaining systems. Fixing these
defects should reduce costs and may mitigate some of the need to develop
new tools and techniques to manage complex systems. While experienced
systems engineers may be aware of the defects, the fact that the defects are
current and not historic implies that in general systems engineers are not
aware of them. The eight defects in systems engineering discussed in this
Chapter are:

1. The selection of independent alternative solutions;
2. The misuse of the V diagram;
3. The lack of a standard process for planning a project;
4. The abandonment of the Waterfall model;
5. Unanswered and unasked questions;
6. Lack of a metric for the goodness of requirements;
7. A focus on technological solutions;
8. The need to focus on people as well as process.

2007

Chapter 20 Eight deadly defects

284

While some systems engineers perform a version of systems engineer-
ing which does not include these defects, they tend to be the exception ra-
ther than the rule. Consider some aspects of these defects in turn, and how
fixing them would lower the cost of doing work.

20.1 The selection of independent alternative solutions
Text book systems engineering generally discusses the selection of alterna-
tives with the implicit assumption that the selected alternative is also the
optimal one, e.g. (Blanchard and Fabrycky, 2006) page 41). Consider the
following scenario. The systems engineering process has identified three
alternative candidate solutions (A, B and C). “C” gets the highest score (even
after the sensitivity analysis to make sure the weightings were reasonable).
“C” gets selected, but which of the candidate solutions is the optimal solu-
tion? The answer is possibly none of them is optimal because each of the
different design teams will generally have different strengths and weakness-
es so different parts of different solutions will be better or worse than the
corresponding part of their counterpart systems. The optimal system may
be a combination of the best parts of all of them yet we do not get to exam-
ine this combination. However, fixing this defect may require a change to
the acquisition contract paradigm.

20.2 The misuse of the V diagram
The V diagram is often described as a depiction of the systems engineering
process. Practitioners however tend to forget or are unaware that it is a
three dimensional model and in its two-dimensional representation it is only
an overview of some of the aspects of the project cycle relating develop-
ment to T&E at the various phases of the SDLC while abstracting out all other
information. The V diagram was initially introduced into both software and
systems engineering as a project management tool.

A literature search found the first mention of the V diagram (Rook,
1986) where it was introduced as a software project management tool illus-
trating the concept of verification the process-products at established mile-
stones. The original figure extracted and shown in Figure 20-1 was cap-
tioned “the stages in software development confidence”. It was drawn to
show that the intermediate process products produced at each phase of the
software development were to be verified against previous baselines before
starting work on the subsequent phase. The V diagram seems to have been
introduced to the systems engineering community (Forsberg and Mooz,
1991) also as a project management tool. Forsberg and Mooz and Rook
state that the simplistic view of the product development cycle is not to be
interpreted as a waterfall namely that each phase is to be completed before
the next begins. They agree that explanatory work on subsequent phases is

Chapter 20 Eight deadly defects

285

often required before a phase is complete and there is a third dimension to
the model. Forsberg and Mooz include a representation of that third dimen-
sion in their paper and one of their figures, extracted from their paper is
shown in Figure 20-2.

Figure 20-1 The V diagram for software development (Rook, 1986)

Figure 20-2 The three dimensions to the V diagram (Forsberg and
Mooz, 1991)

Chapter 20 Eight deadly defects

286

In addition, when the V diagram is used in a simplistic manner to depict
the relationship between development and T&E there seems to be no place
in the diagram for the ‘prevention of defects’80. While the development
team implements the system, the test team is busy planning the tests. A
definition of a successful test is one that finds defects81 (Myers, 1979). This
is because if no defects are found, the result is ambiguous, because either
there are no defects or the testing was not good enough to detect any de-
fects. The lack of prevention escalates costs. Deming wrote “Quality comes
not from inspection, but from improvement of the production process”
(Deming, 1986) page 29). He also wrote “Defects are not free. Somebody
makes them, and gets paid for making them” (Deming, 1986) page 11). If
the test team can identify defects to test for, why can’t they hold a work-
shop or other type of meeting to sensitise the development team to those
defects and hence prevent them from being built into the system? Such
workshops in postgraduate courses at UMUC and UniSA have sensitised stu-
dents to the problems caused by poorly written requirements (Kasser, et al.,
2003). The development and test teams need to work interdependently not
independently (Kasser, 1995).

The V diagram needs to be used in context in its full three dimensional
version (Forsberg, et al., 2000) with the explicit addition of prevention.

On the subject of prevention, the systems engineering process could al-
so benefit from the adoption of poka-yokes (procedures that prevent mis-
takes) (Chase and Stewart, 1994) as quoted by (Chase, et al., 1998) page
155).

20.3 The lack of a standard process for planning a project
Systems engineering has often been described as a process, e.g. (MIL-STD-
499B, 1992). However, it lacks a standard process element for the planning
phase of a task. A typical approach is shown in Figure 20-3; a suggested im-
proved process based on experience is shown in Figure 20-4. The contribu-
tion of this process is two important elements that are not generally per-
formed, namely:
 Identification and application of lessons learned from prior projects,
 Negotiation of objectives and resources.

After the task begins the process architect determines the objectives
and available resources. Sometimes they are provided, other times they

80 This is dicussed in section 26.3.
81 As opposed to the goal of the system development team to produce a defect free
system.

Chapter 20 Eight deadly defects

287

have to be identified. The process architect should ask the following ques-
tions (Chapter 13):

Figure 20-3 Typical approach to planning a project

Figure 20-4 Process for starting a task

1. Has anyone done this task or a similar one before?
2. Did they succeed or fail?
3. Why?
4. What is the difference between the other task(s) and this one that

might change those results?

Obtaining answers to these questions, performing the analysis, and pre-
senting the result, requires access to the organization’s lessons learned da-

Chapter 20 Eight deadly defects

288

tabase. Once access is provided, the first action is to determine if anyone
has faced a similar task and identify the lessons learned from those tasks.
The process architect identifies what worked, what didn’t work in the previ-
ous situations; compares the situations to the current one and determines if
those factors apply, and what effect they may have. This step of the process
may be thought of as prevention, pattern matching, risk management or
even inheritance in its object-oriented sense. This step is critical since it can
prevent mistakes from being made, and wrong approaches from being tak-
en. Yet process methodologies such as PRINCE2 (Bentley, 1997) generally
require the lessons learned to be documented at the end of a process but do
not require that they be reviewed at the start of the next project. Project
lessons learned documents seem to be write-only memories except in CMM
Level 5 organisations!

The outputs of this stage of the process are the initial risk management
plan for process related and some product related risks together with the
draft schedule and WBS. The next phase of the process is to negotiate the
objectives and resources. The draft WBS and schedule is adjusted to meet
the needs of the situation. This process, incorporates prevention of defects
(at least some known ones) by definition, hence reduces the cost of doing
work. Early identification of inadequate schedule time or resources allows
the project manager to attempt to deal with the situation in a proactive
manner, rather than a reactive manner in the implementation phase of the
project. Once any adjustments have been made as a result of the negotia-
tions, the process architect turns the initial version of the work plan over to
the project manager and the task begins.

If realistic schedules and objectives are set, the project manager is able
to plan ahead, anticipate and implement changes, so schedules and budget
goals are met. As a consequence, the project receives very little senior man-
agement visibility. All goes reasonably well, and in the main, senior man-
agement in general, does not realize or recognize the achievements of the
process architect and project manager82 (Kasser, 1995) page 4). If unrealistic
schedules are set, or insufficient resources are allocated to the project, the
project will be doomed, but at least everyone will know why ahead of time!
This situation manifests itself in the John Wayne style of reactive manage-
ment, continually fighting crises, leading to high visibility (Kasser, 1995) page
135). All the problems are visible to senior management, who tend to re-
ward the project manager for saving the project, sometimes from the same
problems that the project manager introduced. As Deming wrote: “Heard in
a Seminar: One gets a good rating for fighting a fire. The result is visible; can

82There weren't any problems, so obviously cost and schedule were underestimat-
ed.

Chapter 20 Eight deadly defects

289

be quantified. If you do it right the first time, you are invisible. You satisfied
the requirements. That is your job. Mess it up, and correct it later, you be-
come a hero” (Deming, 1986) page 107). Thus if you want to be promoted,
your approach should be to build failure and recovery into the project. In-
stead of heading problems off, anticipate them, but let them happen. Only
apply corrective measures after the making the problems visible to upper
management. If you implement a project in this manner, it will make you a
hero at the expense of the organization.

20.4 The abandonment of the waterfall model
The waterfall model (Royce, 1970) has been deemed a failure because of the
effect of changes and the need for iterative development cycles. However,
the original waterfall model shown in Figure 13-1 works very well when the
requirements are known and don’t change during the development time
(Chapter 13). However, in general development takes so long that the re-
quirements change. This condition has been depicted in the chaotic view
shown in Figure 13-2. However with some configuration control, the model
can be drawn as shown in Figure 13-4. The spiral model (Boehm, 1988) is
basically the waterfall model with risk management emphasised. However,
the spiral does not go far enough, the functionally provided by the system
produced by development needs to converge on the changing needs of the
user which makes configuration management and control of change critical
components of the development process.

A series of mini-waterfalls or cataracts can provide that evolutionary
convergence. This model is shown in Figure 13-5 as the Cataract model
(Chapter 13) where each Build contains a short duration waterfall under the
control of a CCB as shown in Figure 8-1. The Cataract model is not iterative
or sequential; it is a multi-phased time-ordered parallel-processing recursive
paradigm that can be used to control the development of both systems in-
cluding so-called systems of systems in a more cost-effective way than to-
day’s other development methodologies.

20.5 Unanswered and unasked questions

20.5.1 Unanswered questions

There are two critical questions that cannot be answered accurately in to-
day’s systems engineering development paradigm at any time during the
SDLC (Chapter 5 and 6). These unanswerable questions posed by the suppli-
er to the customer are:

 What is the exact percentage of completeness of the system under
construction?

Chapter 20 Eight deadly defects

290

 What is the probability of successful completion within budget and
according to schedule?

Given that some systems development can take many years, and the
customer is paying for work in process, this is critical information when the
system under development is needed to work in a family of other systems to
provide some needed capability at some future time.

20.5.2 Unasked questions

There are several questions that are not asked in today’s paradigm because
the information has not been assembled in such a manner as to make peo-
ple think about asking them. These questions that are not asked today at
System Requirements Review time have been identified by the object-
oriented approach (Chapter 17) and include the following:
 Have the high priority requirements been assigned to early Builds? This

allocation ensures that if funds are cut during the development time,
the customer has a high probability of receiving the most important
functionality.

 What is an appropriate Risk Profile for the type of system to be real-
ised and is that the same profile as the instance being realised? Many
systems are repeats of previous systems with modifications. Risk Pro-
files may be able to help identify the technological uncertainty associat-
ed with the project (Shenhar and Bonen, 1997). Comparisons with simi-
lar projects may be able to identify potential problems and allow proac-
tive risk management.

 Are requirements with the following pair of properties really needed (at
SRR time)?

 High cost, high risk.
 Low priority, high cost.
 Low priority, high risk.

Are the features driving these requirements really needed? Think of the
cost savings if these requirements are eliminated before work takes place
implementing them. Developing ways of answering these questions should
lower the cost of doing work. Tran and Kasser have performed research into
developing ways of presenting decision makers with the information to allow
them to more easily pose and answer these questions (Tran and Kasser,
2005).

20.6 The lack of a metric for the goodness of requirements
“It has been known since as early as the 1950s that addressing requirements
issues improves the chance of systems development success” (Buren and

Chapter 20 Eight deadly defects

291

Cook, 1998). There has been a lot of research into building the right system
and doing requirements better (Glass, 1992). Much of that research has
focused on how to state the requirements in the form of a specification once
they have been obtained, using a RTM, and the tools that incorporate a
RTM. However, recognition that the current paradigm produces poorly writ-
ten requirements has been documented at least as early as 1993 (Hooks,
1993) and various approaches have been since proposed to alleviate the
situation without much success83. For example:
 Jacobs states that a 1997 analysis of the software development process

performed at Ericsson identified “missing understanding of customer
needs” as the main obstacle for decreasing fault density and lead-time
(Jacobs, 1999). Related findings were aggregated under the heading “no
common understanding of ‘what to do’”. The counter measures to
overcome these problems focused on testing the quality of the re-
quirements rather than producing good requirements. There was no
proposal on how to get clear requirements, nor was there a clear under-
standing of what a clear requirement was.

 Goldsmith states that the process of “defining business requirements is
the most important and poorest performed part of system development”
(Goldsmith, 2004).

Thus, there is a consensus that good requirements are critical to the
success of a project. System engineers have focused on generating require-
ments to ensure that the as-built system is fit for its intended purpose. Re-
quirements Engineering is a discipline that is evolving from its traditional
role as a mere front-end to the systems lifecycle towards a central focus of
change management in system-intensive organizations (Jarke, 1996). For
example:

 The definition of requirements engineering as “the science and discipline
concerned with analysing and documenting requirements” (Dorfman
and Thayer, 1990).

 The definition of requirements engineering as “the systematic process
of eliciting, understanding, analysing, documenting and managing re-
quirements” (Kotonya and Summerville, 2000).

However, there is no universally accepted metric for the goodness of
requirements either individually or as a set in a specification (Kasser, et al.,
2006). We need to develop one and a number of ways of developing such
metrics were proposed by Kasser et al. (Kasser, et al., 2006).

83 Because the B paradigm is inherently flawed (Chapter 28).

Chapter 20 Eight deadly defects

292

20.7 A focus on technological solutions
Systems engineering traditionally focuses on the technological part of the
system particularly in the USA with its focus on high technology. This was
recognised as early as 1959 by Goode and Machol who wrote “the systems
engineer is primarily interested in making equipment changes” (Goode and
Machol, 1959) page 130). However, when the real problem is addressed,
technology alone may not provide the solution. For example the problem
the executive had was “to secure at all times, live and accurate data concern-
ing the exact conditions of the business” (Farnham, 1920) page 20). Yet, in
the subsequent 85 years, we have not developed an accounting system
which tells the decision makers what their costs really are or a management
information system that provides pertinent information for making an in-
formed decision between two alternative courses of action.

Fifty years after Farnham called for a management information system
that would provide a solution to the executive’s need. Stafford Beer provid-
ed a description of such a conceptual information system. Beer discussed
the British War Room in the Battle of Britain and NASA’s control room at the
Manned Space Flight Center in Houston, Texas as close parallels (Beer, 1972)
page 244). He wrote that bits and pieces of it (the system) existed. Yet in
the intervening years, although the technology to build such a system has
become commonplace, it still does not exist, at least in the literature. While
Beer proposed a centralized control centre, today’s technology allows for
personal desktop portals accessing information via software agents in an
integrated digital or network centric environment. In such an environment,
information pertaining to the process flows in the organization, the re-
sources available and schedules would be accessible via software agents
(Chapter 8). This information exists in digital form in most organizations; it is
just not readily accessible in a manner to assist the decision makers.

To me, the most successful management information system of the 20th

Century did not contain a single mechanical or electronic computer. It was
the command and control system employed by the Royal Air Force (RAF) in
the Battle of Britain in 1940. The system contains the radar sites, the Ob-
server Corps, the communications links and the various headquarters and
operations rooms. The RAF evolved the system, the developers working
together with the customer. The people were integrated with the technolo-
gy. When the system entered into service it was staffed by personnel who
understood the situation at the other end of the interface. Thus pilots
staffed the operations room and spoke to the pilots in the squadrons. This
system was developed in the late 1930’s before “systems engineering” was
recognised as a discipline. The developers didn’t stop to discuss if it was a
system, a System of Systems or a family of systems, they just developed it.
So even though Germany had better radar technology, the RAF integrated

Chapter 20 Eight deadly defects

293

their adequate technology into a system and used it to help win the battle
(Bungay, 2000).

Even though the system was successful, lessons can still be learned from
two of the failings of this system which resulted in preventable downtime of
parts of the system. When the parts of the system went down, a window
was opened up in the air defence system which allowed entry to the enemy
aircraft. The two failures were:

 The radar sites and operations rooms were dependent on externally
generated electricity from the Power Grid. When the Grid connec-
tions were destroyed by enemy action, parts of the system went
off-line until repairs were affected and power was restored.
Standby power generators should and could have been deployed as
part of the installations.

 The operations rooms were co-sited with airfields for convenience.
On occasions when the airfields were bombed, the operations
rooms were damaged and taken off line for short periods of time.

It should be pointed out that the effects of these failings were minor
due to the tactics employed by the Luftwaffe in the battle. However, an al-
ternative set of tactics pointed out by (Bungay, 2000) could have exploited
these defects to cause much more and serious damage to the RAF infrastruc-
ture. Modern systems engineering needs to be able to develop systems in
the same manner as the RAF developed this system without overlooking
similar types of defects.

20.8 The need to focus on people as well as process
Systems engineering is perceived as a process84 (Hall, 1962; MIL-STD-499B,
1992) and there is a major focus on process standards and the CMM. The
contribution of effective people and the difference they can make is general-
ly overlooked. Henry Ford wrote “the best results can and will be brought
about by individual initiative and ingenuity – by intelligent individual leader-
ship” (Ford and Crowther, 1922). The contribution of good people in an or-
ganisation was recognised in the systems engineering literature about 50
years ago, namely “Management has a design and operation function, as
does engineering. The design is usually done under the heading of organiza-
tion. It should be noted first that the performance of a group of people is a
strong function of the capabilities of the individuals and a rather weak func-
tion of the way they are organized. That is, good people to a fairly good job
under almost any organization and a somewhat better one when the organi-

84 See Section 29.2.2.

Chapter 20 Eight deadly defects

294

zation is good. Poor talent does a poor job with a bad organization, but it is
still a poor job no matter what the organization. Repeated reorganizations
are noted in groups of individuals poorly suited to their function, though no
amount of good organization will give good performance. The best architec-
tural design fails with poor bricks and mortar. But the payoff from good or-
ganization with good people is worthwhile” (Goode and Machol, 1959) page
514).

Bungay in summarising the people in the Battle of Britain discusses the
differences between Air Vice-Marshalls Keith Park and Trafford Leigh-
Mallory who commanded different Fighter Groups. Bungay then continues
“What Park achieved in the Battle of Britain is in itself enough to pace him
amongst the great commanders of history. But his performance in 1940 was
not a one-off. In 1942 in Malta, Park took the offensive and turned Kessel-
ring’s defeat into a rout. After that, he directed the air operations that ena-
bled Slim to expel the Japanese from Burma. He was as adept at offence as
he was at defence, and, like Wellington, he never lost a battle. His record
makes him today, without rival, the greatest fighter commander in the short
history of air warfare” (Bungay, 2000) page 383). In 1940 Park and Leigh-
Mallory had the same processes based on (RAF tactics and doctrine), yet it
was not the superiority of the RAF process to that of the Luftwaffe that
made the difference85, it was the person who made the difference86. One
was an administrator, the other a leader!

The literature is full of advice as to how to make projects succeed; typi-
cal examples are (Rodgers, et al., 1993; Peters and Waterman, 1982; Peters
and Austin, 1985; Peters, 1987; Harrington, 1995) which in general tend to
ignore process and focus on people. Systems engineers focus on developing
processes for organisations – namely the rules for producing products.
Companies don’t want employees who can follow rules; they want people
who can make the rules (Hammer and Champy, 1993) page 70). Excellence
is in the person not the process. This was recognised as early by Hall’s speci-
fications or traits for an “Ideal Systems Engineer” (Chapter 2). In the inter-
vening years, process standards such as ISO 9000 and the various CMMs
have proliferated. Yet the Standards do not provide metrics that can predict
the failure of a project87.

Consider the CMM. Standing at the bottom of the process improvement
mountain you only see the foothills leading to the plateau at CMM Level 5 as

85 In fact, as Bungay points out, the RAF tactics for fighter formations was inferior to
that of the Luftwaffe and cost the lives of many pilots until the survivors learnt to
ignore them.
86 As another example, consider the service at your favourite restaurant. Do all table
staff provide the same level of service, or are some better than others?
87 See Section 6.7.

Chapter 20 Eight deadly defects

295

shown in Figure 19-4. When you get to CMM Level 5 which way do you look,
back the way you came, or further up the mountain? If you look back, you
see that CMM Level 1 is categorised by having success achieved by heroes.
CMM Levels 2-5 discourage heroes and focus on orderly processes. Howev-
er, going from chaos to order should always produce an improvement. We
need to look at cost effective ways of improvement. We need to look for-
ward up the mountain and explore what lies beyond the base camp at CMM
Level 5 to continue the journey further up the process improvement moun-
tain. Thus CMM Level 5 is only a start.

We need to research how effective people can best be used in organiza-
tions where there is order. How does the world of agile processes fit within
the CMM? Once process are documented and followed, then the next step
might be to treat process elements as components of a system (the whole
process) and process architect agile systems to meet various needs. Re-
search needs to be done to define the relationship between the CMM levels,
effective people and agile process/systems development.

20.9 Summary
This Chapter has discussed eight of the defects in today’s systems engineer-
ing paradigm. The Chapter also discussed the need for further research be-
cause fixing these defects has the potential to significantly reduce the cost of
acquiring and maintaining the systems that underpin our 21st century civili-
zation.

20.10 Conclusion
Adopting systems engineering without fixing these defects will not realise
the potential of systems engineering. We need to train more effective sys-
tems engineers.

Chapter 21 A framework for understanding systems engineering

297

21Introducing	a	framework	for	
understanding	systems	engineering

While the world is turning to systems engineering to solve the problems of
developing and maintaining the systems underpinning our civilization, after
50 years of trying, development projects are still characterized by cost and
schedule overruns as well as outright cancellations (CHAOS, 2004). Against
this background,
 Systems engineering is still struggling to be recognised as an engineering

discipline in an environment in which it is perceived to overlap the activ-
ities of project management.

 While universities offer degrees in systems engineering and pursue re-
search, systems engineering still lacks a framework for research and ed-
ucation.

 Systems engineers can’t agree on what systems engineering is (activity).
 Systems engineers can’t agree on what systems engineers do (role).
 Systems engineers can’t agree on a definition of systems engineering.

This situation needs to be remedied. Research has shown that one rea-
son for the lack of agreement is that systems engineers do many and differ-
ent tasks in their work and consequently have different perspectives on sys-
tems engineering (Chapter 18). In addition trying to understand systems
engineering seems to be like solving a wicked problem (Rittel and Webber,
1973). Wicked problems have the following ten characteristics:

1. There is no definitive formulation of a wicked problem.
2. Wicked problems have no stopping rule.
3. Solutions to wicked problems are not true-or-false, but good-bad,
4. There is no immediate and no ultimate test of a wicked problem.
5. Every solution to a wicked problem is a “one-shot” operation”; be-

cause there is no opportunity to learn by trial-and-error, every at-
tempt counts significantly.

2007

Chapter 21 A framework for understanding systems engineering

298

6. Wicked problems do not have an enumerable (or an exhaustively
describable) set of potential solutions, nor is there a well-described
set of permissible options that may be incorporated into the plan.

7. Every wicked problem is essentially unique.
8. Every wicked problem can be considered to be a symptom of an-

other problem.
9. The existence of a discrepancy representing a wicked problem can

be explained in numerous ways. The choice of explanation deter-
mines the nature of the problem’s resolution.

10. The planner has no right to be wrong88.

Many of the characteristics of wicked problems also seem to manifest in
the first phase of the scientific method of solving problems, namely the ob-
servation phase. The scientific method can be considered as a lifecycle con-
sisting of:

1. Observation of the system without an understanding of the system.
2. Formulation of a hypothesis to explain the system.
3. Use of the hypothesis to predict the behaviour of the system in var-

ious situations.
4. Testing of the hypothesis to determine if the system behaves as

predicted in those situations.

It is possible that wicked problems manifest themselves in the first step
of the scientific method cycle. That is, the system or a part of it is under ob-
servation, but no working hypothesis to explain the system has yet been
developed. For example, the state of the art of chemistry before the devel-
opment of the periodic table of the elements could be considered as a wick-
ed problem, as could the state of electrical engineering before the develop-
ment of Ohm’s Law.

If today’s systems engineering is in a similar state, namely solving wick-
ed problems, then a major step forward in the development of the discipline
would be to apply the scientific method to the problem formulate and test
hypotheses and eventually evolve a working framework for applying systems
engineering in the manner of the application of the periodic table of ele-
ments in chemistry. The process of thinking about the observations, and
applying the scientific method would be enlightening in itself. This Chapter
takes the plunge and lists four requirements for a framework for under-
standing systems engineering, then documents the evolution of one such a
framework by viewing systems engineering from the perspective of problem
solving.

88 The planner was the person facing the wicked problem in the context of the cited
publication.

Chapter 21 A framework for understanding systems engineering

299

21.1 The need for a framework for understanding systems
engineering

We need a framework because systems engineering has failed to fulfil 50
years of promises of providing solutions to the complex problems facing so-
ciety. Wymore pointed out that it was necessary for systems engineering to
become an engineering discipline if it was to fulfil its promises and thereby
survive (Wymore, 1994). Nothing has changed in that respect since then.
He also wrote that “Systems engineering is the intellectual, academic, and
professional discipline, the principal concern of which is to ensure that all
requirements for bioware/hardware/software systems are satisfied through-
out the lifecycles of the systems. This statement defines systems engineering
as a discipline, not as a process. The currently accepted processes of systems
engineering are only implementations of systems engineering”. Out of more
than 50 definitions discovered in the literature discussed in Chapters 12 and
18, Wymore provided the only definition of systems engineering as a disci-
pline.

21.2 Systems engineering as a discipline
If systems engineering is going to be recognized as a discipline we need to
consider the elements that make up a discipline. One view of the elements
of a discipline was provided by (Kline, 1995) page 3) who states “a discipline
possesses a specific area of study, a literature, and a working community of
paid scholars and/or paid practitioners”.

Systems engineering has a working community of paid scholars and paid
practitioners. However, the area of study seems to be different in each aca-
demic institution but with various degrees of commonality. This situation
can be explained by the recognition that

1. systems engineering has only been in existence since the middle of
the 20th century (Johnson, 1997; Jackson and Keys, 1984; Hall,
1962), and

2. as an emerging discipline, systems engineering is displaying the
same characteristics as did other now established disciplines in
their formative years89.

Thus, systems engineering may be considered as being in a similar situa-
tion to the state of chemistry before the development of the periodic table
of the elements, or similar to the state of electrical engineering before the

89 It may have taken so long to recognize the situation because few if any living sys-
tems engineers were around in the formative days of chemistry and electrical engi-
neering.

Chapter 21 A framework for understanding systems engineering

300

development of Ohm’s Law. This is why various academic institutions focus
on different areas of study but with some degree of commonality in the sys-
tems development lifecycle. Nevertheless, to be recognized as a discipline,
the degree of overlap of the various areas of study in the different institu-
tions needs to be much, much greater.

21.3 Moving towards a discipline
Assuming today’s systems engineering is in a similar state to chemistry and
electrical engineering in their formative years, then, as stated above, a major
step forward in the development of the discipline would be to apply the sci-
entific thinking stream of systems thinking (Richmond, 1993) to postulate a
hypothesis (namely a framework for understanding systems engineering
exists); identify and prototype a candidate framework, test it; modify it and
eventually evolve a working framework for understanding systems engineer-
ing. The application of this framework would then pull together systems
engineering in an analogous manner to the application of the periodic table
of elements in chemistry.

For systems engineering to be a discipline according to Kline’s definition,
then the specific area of study needs to be defined. This requires some re-
search. The hypothesis behind this research is that if the activities per-
formed by systems engineers can be plotted in a framework it may be able
to bring about a revision of the a priori understanding of systems engineer-
ing. This means a change in the understanding of its current paradigm
(Churchman, 1979) page 105) or weltanschauung (Checkland and Scholes,
1990), and its emergence as a true engineering discipline. Kasser discussed
the evolution of a proposed framework for understanding systems engineer-
ing (Kasser, 2006). This Chapter places that framework in the context of
Kline’s definition of a discipline.

21.4 Elements relevant to research in a discipline
Research into a discipline needs the following three items (Checkland and
Holwell, 1998):

1. An Area of Concern (A), which might be a particular problem in a
discipline (area of study), a real-world problem situation, or a sys-
tem of interest.

2. A particular linked Framework of Ideas (F) in which the knowledge
about the area of concern is expressed. It includes current theories,
bodies of knowledge, heuristics, etc.as documented in the literature
as well as tacit knowledge.

Chapter 21 A framework for understanding systems engineering

301

3. The Methodology (M) in which the framework is embodied that in-
corporates methods, tools, and techniques in a manner appropriate
to the discipline that uses them to investigate the area of concern.

Figure 21-1 (Checkland and Holwell, 1998) page 23) illustrates the rela-
tionship between these elements. Given that there is a working community
of paid scholars and/or practitioners (Kline, 1995) page 3), these same three
elements can also be used to characterize a discipline because they expand
Kline’s specification and encompass the key aspects of a discipline (Cook, et
al., 2003). Consider each of these elements in turn, as they apply to systems
engineering.

Figure 21-1 Elements relevant to any piece of research (Checkland and
Holwell, 1998: p 13)

21.4.1 An area of concern (A)

The Area of Concern (A) should cover what systems engineers do, where
they do it, and the overlapping of, and differences in, the roles of systems
engineering, systems architecting, and project management. There have
been many diverse opinions on these topics over the years, typical examples
were discussed in Chapters 2, 12 and 14, hence the difficulty in defining sys-
tems engineering. Three more sample opinions are:
 “Despite the difficulties of finding a universally accepted definition of

systems engineering, it is fair to say that the systems engineer is the
man who is generally responsible for the over-all planning, design, test-
ing, and production of today’s automatic and semi-automatic systems”
(Chapanis, 1960) page 357).

 The principal functions of systems engineering are “to develop state-
ments of system problems comprehensively, without disastrous over-
simplification, precisely without confusing ambiguities, without confus-
ing ends and means, without eliminating the ideal in favour of the mere-
ly practical, without confounding the abstract and the concrete, without
reference to any particular solutions or methods, to resolve top-level sys-
tem problems into simpler problems that are solvable by technology:
hardware, software, and bioware, to integrate the solutions to the sim-

Chapter 21 A framework for understanding systems engineering

302

pler problems into systems to solve the top-level problem” (Wymore,
1993) page 2).

 “Systems engineering is a wide-range activity, and it should not be han-
dled in the same form for all kinds of systems” (Shenhar and Bonen,
1997).

Each opinion seems to represent a viewpoint based on the experience
of the writer90. In addition, the latest systems engineering standard ISO
15288 provides a list of the organizational processes or activities in which
systems engineers are involved as shown in Figure 21-2 extracted from the
Standard (Arnold, 2002) page 61). Thus, ISO 15288 could be considered as a
framework for systems engineering based on the activities which systems
engineers perform.

Figure 21-2 ISO 52888 systems engineering processes

Chapter 19 discussed the overlapping of, and differences in, the roles of
systems engineering, systems architecting, and project management. The
(A) of systems engineering thus needs to span the activities performed by
the roles of the systems engineer, operations researcher and project man-
ager.

21.4.2 The framework of ideas (F)

Checkland and Holwell discuss the importance of a “declared-in-advance”
epistemological framework (F) when undertaking interpretive research
(Checkland and Holwell, 1998) pages 23-25). Thus establishing an (F) is fun-

90 At least in the case of (Kasser, 1995)

Chapter 21 A framework for understanding systems engineering

303

damental to the definition of a research topic or a discipline. As systems
engineering focuses on problems (Wymore, 1994)91 and the common de-
nominator in the definitions of a system listed in Chapter 12 is the statement
of a problem, the (F) for systems engineering can be considered as being
documented in the literature on critical thinking, systems thinking, problem
solving in the activities that take place in the (A)92.

21.4.3 The methodology (M)

Since the activity known as systems engineering overlaps other organiza-
tional activities (Chapter 12), systems engineering may be considered as a
meta-methodology incorporating the methodologies, tools and techniques
used in the (A) by both systems engineers and practitioners of the other or-
ganizational activities93. This puts a considerable number of tools into the
toolbox of the systems engineer including:
 Total Systems Intervention (TSI) (Flood and Jackson, 1991);
 Soft Systems Methodology (SSM) (Checkland and Holwell, 1998);
 the process-oriented, blended, object-oriented, rapid development,

people oriented, and organisational-oriented methodologies discussed
in (Avison and Fitzgerald, 2003);

 a whole suite of problem solving tools for requirements elicitation and
elucidation (Hari, et al., 2007); these include interviews (Alexander and
Stevens, 2002), Joint Applications Development (JAD) (Wood and Silver,
1995), Analytical Hierarchical Process (AHP) (Saaty, 1990), Nominal
Group Technique (NGT) (Memory Jogger, 1985) scenario building, us-
er/customer interviews, questionnaires, customer visits, observation,
customer value analysis, use cases, contextual inquiry, focus groups,
viewpoint modelling (Darke and Shanks, 1997), and Quality Function
Deployment (QFD) (Hauser and Clausing, 1988; Clausing and Cohen,
1994);

 the more commonly used hard systems methodologies (Blanchard and
Fabrycky, 1981; Buede, 2000) and other treatments of the systems en-
gineering process.

Thus systems engineering has an (A), (M) and (F) and meets (Kline,
1995)’s view of a discipline namely it has “a specific area of study, a litera-
ture, and a working community of paid scholars and/or paid practitioners”
and contains the elements relevant to research in a discipline (Checkland
and Holwell, 1998). All it lacks is a framework for understanding it!

91 Wymore was in the problem camp, see section 29.2.3.
92 This statement led to the research documented in (Kasser, 2013) discussed in the
preface to the second edition.
93 This is the perspective from the meta-discipline camp, see section 29.2.4.

Chapter 21 A framework for understanding systems engineering

304

21.5 Requirements for a framework
A framework for understanding systems engineering must provide an im-
provement on the current paradigm, or there is little point in developing
one. Looking around at the state of systems engineering and its problems,
the following four requirements for such a framework were defined (Kasser,
2006).

1. The framework shall provide an understanding of why systems en-
gineers can’t agree on their roles and activities.

2. The framework shall provide an understanding of the reasons for
the overlap between systems engineering and project manage-
ment.

3. The framework shall provide a way to cope with complexity.
4. The framework shall enable the development of a way of working

that lowers the cost of doing work by at least an order of magni-
tude.

21.6 Rationale for the requirements for the framework
The rationale for these four requirements for the framework is explained
below.

21.6.1 The framework shall provide an understanding of why sys-
tems engineers can’t agree on their roles and activities

Systems engineering had a large number of definitions (Chestnut, 1965)
page 8) citing (Churchman, et al., 1957; Goode and Machol, 1959; Morton,
1959; Eckman, 1961; Williams, 1961; Hall, 1962; Gosling, 1962; Bender,
1962; Feigenbaum, 1963; Mesarovic, 1964) and a number of subsequent
definitions were presented in Chapter 12. This is a situation characteristic of
the forming stages of a discipline and needs to be remedied. Hill and
Warfield anticipated George Friedman (Friedman, 2006) writing “develop-
ment of a theory of systems engineering that will be broadly accepted is
much to be desired” (Hill and Warfield, 1972). Without such an understand-
ing, systems engineers will continue to discuss rather than develop and ap-
ply systems engineering, and not move onwards to the creation of a disci-
pline. Until a framework for the broad range of activities known by the term
‘systems engineering’ is developed and systems engineers understand their
location of their activity within the framework it will be impossible to devel-
op a theory of systems engineering.

Chapter 21 A framework for understanding systems engineering

305

21.6.2 The framework shall provide an understanding of the rea-
sons for the overlap between systems engineering and project
management

We need this understanding to be able to reengineer organizations in order
to remove the overlap. The overlap is expensive due to both the duplication
of resources and the modern management paradigm which has separated
the decision makers from the people who understand the implications of the
decisions. This situation was recognized almost at the dawn of systems en-
gineering by Goode and Machol who wrote “The most difficult obstacle that
may be encountered by an [systems] engineer is not the problem but a man-
agement which is unsympathetic or lacking in understanding” (Goode and
Machol, 1959) page 513). The optimal management method is said to be
“Management by Walking Around” (MBWA) (Peters and Austin, 1985). Yet
Deming wrote “MBWA is hardly ever effective. The reason is that someone
in management, walking around, has little idea about what questions to ask,
and usually does not pause long enough at any spot to get the right answer”
(Deming, 1986) page 22). And the situation continues into the 21st century
as satirized by Scott Adams in his Dilbert cartoons (Adams, 2006). Think of
the cost of the waste and the work expended to implement and then correct
the results of poor decisions. Once there is an understanding of the reasons
for and the nature of the overlaps, we stand a chance of removing the over-
lap.

21.6.3 The framework shall provide a way to cope with complexity

Systems engineering has not delivered on its promise to meet the challenge
of complexity as documented by Chestnut who wrote “Characteristic of our
times are the concepts of complexity, growth and change” (Chestnut, 1965)
page 1) and “in a society which is producing more people, more materials,
more things, and more information than ever before, systems engineering is
indispensable in meeting the challenge of complexity” (Chestnut, 1965) page
vii). There is a growing dichotomy in the literature on the subject of complex
systems. On one hand there is literature on the need to develop new tools
and techniques to manage them, e.g. (Cook, 2000; Bar-Yam, 2003). On the
other hand, there is literature on techniques such as aggregation which mask
the underlying complexity to ensure that only the pertinent details for the
particular situation to deal with the issues are considered e.g. (Hitchins,
1998; Maier and Rechtin, 2000; Hitchins, 1992). Perhaps the dichotomy is
due to the observation that “the classification of a system as complex or
simple will depend upon the observer of the system and upon the purpose he
has for considering the system” (Jackson and Keys, 1984). For the frame-
work to be useful, it must provide a way to cope with complexity.

Chapter 21 A framework for understanding systems engineering

306

21.6.4 The Framework shall enable the development of a way of
working that lowers the cost of doing work by at least an or-
der of magnitude

This is a grand target to aim at – more of a goal than a practical requirement.
Systems engineering overlaps project management and other organizational
activities (Johnson, 1997; Roe, 1995), so it can adopt some of their tools and
techniques. There should be no reason why the process architecting func-
tion discussed in Chapter 19 could not improve processes, products and or-
ganizations to the point where the cost of developing projects is lowered by
an order of magnitude. If the Framework only allows the achievement of
50% of this target, it will still be a significant improvement.

Table 21-1 Methodologies in the problem context

Unitary Pluralist

Simple Operations research

Systems analysis

Systems engineering

Systems dynamics

Social systems design

Strategic assumption surfac-
ing and testing

Complex Viable system diagnosis

General system theory

Socio-technical systems
thinking

Contingency theory

Interactive planning

Soft systems methodology

21.7 Candidate Frameworks
The first candidate was based on the work of Flood and who developed a
systemic meta-methodology called TSI that guides practitioners through a
systemic process of choosing a methodology based on the problem situation
Jackson (Flood and Jackson, 1991). TSI is broadly summarized in Table 21-1
(Flood and Jackson, 1991) page 42). However, application of the Table is not
as simple as it appears since “the classification of a system as complex or
simple will depend upon the observer of the system and upon the purpose he
has for considering the system” (Jackson and Keys, 1984)94. This prompted

94 And the confusion between complex and complicated discussed in Chapter 7 of
(Kasser, 2013).

Chapter 21 A framework for understanding systems engineering

307

the attempt to identify an alternative framework.
Building on prior research, the next set of candidates for a framework

for understanding systems engineering were the five identified in Chapter 12
namely:

1. Allison and Cook,
2. Hitchins’ Five-layer Model,
3. Sage’s Three Overlapping facets Model,
4. Badaway’s Master of Technology, and
5. Kasser’s PPPT enterprise framework.

21.8 Evaluating the frameworks against the requirements
Chapter 12 showed that Hitchins framework extended over time into the
two-dimensional HKMF contained the other candidates. The Chapter also
stated that by combining the PPPT and Hitchins models into a multi-
dimensional framework, it should be possible to define a framework for dis-
cussing and understanding systems engineering.

21.9 The Hitchins-Kasser-Massie Framework
This section introduces a three dimensional framework for discussing and
understanding systems engineering. The vertical and horizontal dimensions
of the HKMF were introduced in Chapter 12.

21.9.1 The vertical dimension

The vertical dimension is Hitchins five layers of systems engineering (Section
12.1.2).

21.9.2 The horizontal dimension

The horizontal dimension of the framework is organized as sequential phas-
es in providing a whole complete solution to a problem as an overall, end-to-
end process which consists of conceiving a whole solution to solve a problem
and making that whole “come to life” for the development of a single system
in isolation. The phases have been stated in various ways in various Stand-
ards, conference papers and books, but in the HKMF they are defined in ge-
neric terms as:

A. Identifying the need.
B. Requirements analysis.
C. Design of the system.
D. Construction of the system.
E. Testing of the system components.
F. Integration and testing of the system.

Chapter 21 A framework for understanding systems engineering

308

G. Operations, maintenance and upgrading the system.
H. Disposal of the system.

Consider each of them95.

A. Identifying the need. This is the phase where the bulk of the set of
activities known as systems engineering is performed. Yet in the
Type II96 systems engineering educational paradigm it tends to be
glossed over. Phase A contains the early stage systems engineering
activities addressing the problem and determining the conceptual
solution and is based on Hall, Gelbwaks and Hitchins (Hall, 1962;
Gelbwaks, 1967; Hitchins, 1992) and the summary in Brill (Brill,
1998) and contains the first ‘systems engineering’ process address-
ing the conceptual solution. Phase A comprises the following sub-
phases:
1. This sub-phase contains the set of activities that explore/scope

the problem, leading directly to Phase A.2. The activities per-
formed in this phase produce a definitive statement of the
problem-in-context.

2. This sub-phase contains the set of activities that conceive the
whole solution system (which 'emerges' from/"complements"
the problem) and produces the concept of operations
(CONOPS) that describes how the solution system will operate
in its future environment.

3. This sub-phase contains the set of activities that design the
whole solution system, identify the environment, other inter-
acting systems, the subsystems, parts, interactions, functional
architecture, physical architecture, etc., etc., - but still all of the
whole.

B. Requirements analysis. This phase is the first phase of the second
‘systems engineering’ process addressing the physical solution and
its implementation and contains the set of activities that specify the
solution system as a full set of specifications for the whole and for
the parts and their infrastructure, including the environ-
ment/weltanschauung or paradigm that justifies them. If the speci-
fications are in the form of text mode requirements, the output of
this phase tends to be at the ‘A’ specification level (MIL-STD-490A,
1985). Unfortunately, many systems engineers have been educated
to consider this phase as the first phase of a single systems engi-

95 This section was originally published in what is now Chapter 23 after the first edi-
tion of this book had gone to press and has been relocated here in the second edi-
tion.
96 Or B paradigm discussed in Chapter 28.

Chapter 21 A framework for understanding systems engineering

309

neering process97. For example, (1) requirements are one of the in-
puts to the ‘systems engineering process’ (Martin, 1997) page 95),
(Eisner, 1997) page 9), (Wasson, 2006) page 60) and (DOD 5000.2-R,
2002), pages 83-84); and (2) in one postgraduate class at UMUC the
instructor stated that systems engineering began for him when he
received a requirements specification (Todaro, 1988). While DOD
does call out the ‘analysis of possible alternatives’ subset of activi-
ties in Phase A2 of the HKMF 5000 (DOD 5000.2-R, 2002) pages 73-
74), those activities are called out as part of the separate seemingly
independent CAIV process which (1) is a way of complicating just a
part of the concept of designing budget tolerant systems using the
Cataract approach (Chapter 13) and (2) takes place before the DOD
5000.2-R ‘systems engineering process’ begins.

C. Design. This phase contains the set of activities that creates a more
detailed design of the whole solution system through a combination
of people, doctrine, parts, subsystems, interactions, etc., including
configuration, architecture and implementation criteria. The out-
put of this phase tends to be at the ‘B’ specification level (MIL-STD-
490A, 1985).

D. Construction. This phase contains the set of activities that create
the individual parts, subsystems, interactions, etc. in isolation. Con-
sequently the set of activities are mainly engineering, training, etc.,
not systems engineering. This situation is indicated in Figure 23-1
by the down slope in the line showing the amount of systems engi-
neering at this phase.

E. Unit Testing. This phase contains the set of activities that validate
the performance of the individual parts, subsystems, interactions,
etc. in isolation against their requirements. Consequently the set of
activities are mainly engineering, not systems engineering.

F. Integration and testing of the system. This phase contains the set
of activities that (1) combines the parts, subsystems, interactions,
etc., to constitute the solution system, and (2) establishes, under
test conditions, the performance of the whole solution system, with
optimum effectiveness, in its operational context.

G. Operations, maintenance and upgrading of the system. This phase
contains the set of systems engineering and non-systems engineer-
ing activities that actively provide a solution to the problem for
which the whole system was created. This phase includes operating
the system, support to maintain operations, improvements to the
whole to enhance effectiveness, and to accommodate changes in

97 See Chapter 28

Chapter 21 A framework for understanding systems engineering

310

the nature of the problem over time. These changes iterate phases
A to F (call them Ga ... Gf), ideally without rendering the operating
solution system materially inoperative for an unacceptable period
of time.

H. Disposal of the system. This phase contains the set of activities
that dispose of the system. This phase is rendered necessary where
either where the problem no longer exists, or the solution system is
no longer capable of solving the problem effectively or economical-
ly. If the disposal method has not been predetermined, this phase
may also iterate phases A to F (call them Ha ... Hf).

The resulting two-dimensional framework is shown in Figure 21-398. The
HKMF’s vertical and horizontal dimensions provide a map for the location of
the activities performed by systems engineers.

Figure 21-3 The HKMF for understanding systems engineering

This Chapter now goes beyond Chapter 12 and discusses the develop-
ment of the candidate for the third dimension. The third dimension of the
HKMF is the difficult one since there are many ways to classify the types of
problems posed in each area of the network. One immediately obvious ap-
proach is by the domain (aerospace, military, commercial, etc.); however
applying systems thinking and incorporating lessons learned in other do-
mains, it was felt that:

98 Credit is due to Ms. Xuan-Linh Tran at the Systems Engineering and Evaluation
Centre (SEEC) in the Univsersity of South Australia (UniSA) for drawing the framework
in this format.

Chapter 21 A framework for understanding systems engineering

311

 this situation was analogous to the development of theories of motiva-
tion in Psychology, and

 if the analogy holds true then applying lessons learned from Psychology
to systems engineering, should provide a workable framework.

At one point of time in the development of theories of motivation, Hen-
ry A. Murray identified separate kinds of behaviour and developed an ex-
haustive list of psychogenic or social needs (Murray, 1938). However, the
list is so long that there is almost a separate need for each kind of behaviour
that people demonstrate (Hall and Lindzey, 1957). While this list has been
very influential in the field of psychology, it has not been applied directly to
the study of motivation in organizations. This is probably because the length
of the list makes it impractical to use. On the other hand, Maslow's hierar-
chical classification of needs (Maslow, 1954; 1968; 1970) has been by far the
most widely used classification system in the study of motivation in organi-
zations. Maslow differs from Murray in two important ways; his list is:

 Arranged in a hierarchy -commonly drawn as a pyramid, and contains a
set of hypotheses about the satisfaction of these needs.

 Short -- Only five categories.

Clayton P. Alderfer subsequently proposed modifying Maslow's theory
by reducing the number of categories to three (Alderfer, 1972). Murray's
and early theories defined needs or instincts; Maslow's shows interdepend-
encies and relationships between those needs and Alderfer proposed further
reductions in the number of categories. Applying this situation to systems
engineering, it was felt that using system domains as the third dimension
would be analogous to using Murray’s list of needs and a Maslow/Alderfer
more generic-type classification was needed. Consider Maslow as having
identified common categories and then grouped Murray’s needs into those
categories as well as adding the interdependencies and relationships be-
tween those needs. The different domains could be likened to Murray’s
lists, and since in any domain of systems engineering systems engineers deal
with problems (Wymore, 1994) a short classification of problems could be
likened to Maslow’s categories. Thus, while the levels of complexity and
types of system can also be expected to be influential in systems engineer-
ing, the first attempt to formulate a framework for systems engineering in
this research based the third dimension of the framework on problem solv-
ing (risk mitigation) (Chapter 12). One context of categories for risk mitiga-
tion found in the literature presented a taxonomy in which systems were
classified according to three levels of system scope and four levels of techno-
logical uncertainty (risk) (Shenhar and Bonen, 1997). Their three levels of
system scope correspond roughly to the three lower layers of the Hitchins
five layer model (Section 12.1.2) and their four levels of technological uncer-
tainty (risk) are:

Chapter 21 A framework for understanding systems engineering

312

 Type a99 — Low-Technology Projects which rely on existing and well-
established technologies to which all industry players have equal access.
The system requirements of Low-Tech Projects are usually set by the
customer prior to signing the contract and before the formal initiation
of the project execution phase.

 Type b — Medium-Technology Projects which rest mainly on existing
technologies; however, such systems incorporate a new technology or a
new feature of limited scale. Their requirements are mainly set in ad-
vance; however, some changes may be introduced during the product
development phase. This process often involves a joint effort of the
contractor and customer. It may also require the involvement of poten-
tial customers in the process.

 Type c — High-Technology Projects which are defined as projects in
which most of the technologies employed are new, but existent — hav-
ing been developed prior to the project’s initiation. System require-
ments are derived interactively with a strong involvement by customers
or potential users, and many changes are introduced during the devel-
opment phase.

 Type d — Super-High-Technology Projects which are based primarily on
new, not entirely existent, technologies. Some of these technologies
are emerging; others are even unknown at the time of the project’s ini-
tiation. System requirements are hard to determine; they undergo
enormous changes and involve extensive interaction with the customer.

The differences between the four types of projects are summarized in
Table 21-2.

As the development progresses through the systems development
lifecycle the work takes place in different areas of the HKMF. The nature of
the problems faced by systems engineers in each area of the framework will
be different because the problems will depend on the level of technological
uncertainty of the specific system (Shenhar and Bonen, 1997). For example,
a systems engineer could be working in Area ‘2Ba’ if it is a low technical risk
system or in Area ‘2Bd’ if it is a Super-High-Technology Project. Shenhar and
Bonen stated that [the role of] systems engineering was a wide-ranging ac-
tivity, and should not be performed in the same manner for all kinds of sys-
tems. Shenhar and Bonen also claim that adopting the wrong system and
management style may cause major difficulties during the process of system
creation. Namely what works in Area ‘2Ba’ may not work in Area ‘2Bd’.

99 Shenhar and Bonen used upper case letters to designate the types. This text uses
lower case to differentiate them from the upper case designator of the horizontal
dimension.

Chapter 21 A framework for understanding systems engineering

313

Table 21-2 Shenhar and Bonen’s project classification by technology
uncertainty

Type a Type b Type c Type d

Low -
Tech

Medium -
Tech

High - Tech Super – High -
Tech

Technology All exist Integrates
some new

with mostly
existing

Integrates
mostly new
with some

existing

Key technolo-
gies do not exist

at project’s
initiation

Development None Some Considerable Extensive

Testing None Some Considerable Extensive

Prototyping None Some Considerable Extensive

Requirements Known
prior to
project

start

Joint devel-
opment effort
between cus-

tomer and
contractor

Strong in-
volvement
of contrac-

tor

Extensive con-
tractor involve-

ment many
changes and

iterations

Design cycles 1 1 or 2 At least 2 2 to 4

Design freeze Prior to
project

start

1st Quarter 1st or 2nd

Quarter
2nd or 3rd Quar-

ter

Changes None Some Many Continuous

Management
and systems
engineering

style

Firm and
formal

Moderately
firm

Moderately
flexible

Highly flexible

21.10 Meeting the requirements for the framework
For the HKMF to offer a serious competitive advantage over the current par-
adigm it must meet all of the four requirements for the framework stated
above. Consider ways in which the HKMF meets or can meet the require-
ments.

21.10.1 The framework shall provide an understanding of why sys-
tems engineers can’t agree on their roles and activities

Sheard discussed two perspectives on twelve roles of systems engineers
some of which were life-cycle roles, some program management, and some
which belonged in both (Sheard, 1996). The framework places that discus-

Chapter 21 A framework for understanding systems engineering

314

sion in context of the areas in which the activities are performed, because
systems engineers work in different layers and in different phases of each
layer. Cook and Kasser used an early representation of the HKMF combined
with the V view shown in Figure 21-4 in the classroom to position the areas
in which systems engineers work as summarized below (Cook, 2003):
 Traditional systems engineering covers Layer 2 completely as shown in

Figure 21-5.
 Contemporary test and evaluation is shown in Figure 21-7. The “V” rep-

resentation can be seen in the figure.
 Military platforms lie mostly in Layer 2 with some activities in Layers 3

and 1 as shown in Figure 21-6.

Figure 21-4 Cook’s classroom version of the HKMF

Figure 21-5 Traditional systems engineering

Chapter 21 A framework for understanding systems engineering

315

Figure 21-6 Military platforms

Figure 21-7 Contemporary test and evaluation

Figure 21-8 Information systems

Chapter 21 A framework for understanding systems engineering

316

Figure 21-9 Capability development

 Information systems overlap several layers as shown in Figure 21-8.
They comprise traditional systems integrated out of products interacting
with the business and supply chain layers.

 Capability Development lies as shown in Figure 21-9. These activities
roughly correspond to the investment management and resource man-
agement processes shown in Figure 21-2 (Arnold, 2002). The position-
ing of Capability Development in the figure indicates that this activity is
focussed in the front of the business-layer lifecycle. Capability Devel-
opment also interacts with the supply chain level because there is a
need to ensure enduring support to future Defence capabilities. Lastly,
it interfaces to Layer 2 through the acquisition projects it generates100.

When activities which were plotted in the framework are overlapped,
the result is shown in Figure 21-10. It shows that systems engineers working
in the different parts of the framework do different tasks. Figure 21-10 does
not show, but other evidence indicates that the systems engineers working
in the different areas of the framework use the same words but with differ-
ent meanings. For example the word “capability” has different meanings in
areas ‘3A’ and ‘2C’. Consequently, no wonder they can’t agree on what sys-
tems engineering is and on what systems engineers do.

100 According to (Cook, 2003), such a representation is, of course, overly simplistic
because aspects of the capability development processes also occur further down the
life-cycle, thus a more accurate representation would be an overlay whose colour
saturation represents the degree of effort applied at each point in the two-
dimensional space.

Chapter 21 A framework for understanding systems engineering

317

Figure 21-10 Overlay of areas

As if this isn’t enough, consider the role of the systems engineer in Layer
2 which was examined (Chapter 18). Systems engineers working in that lay-
er do different things in different organizations due to the overlap of roles
and activities, and there is no reason to think that systems engineers work-
ing in other layers also do different things in those layers than do systems
engineers working in different organizations. Again it should not come as a
surprise that systems engineers working in the same layer but in different
organizations can’t agree on what systems engineers do and what systems
engineering is without this external perspective provided by the framework.
Thus it can be said that the HKMF meets the requirement to provide an un-
derstanding of why systems engineers can’t agree on roles and activities.

21.10.2 The framework shall provide an understanding of the rea-
sons for the overlap between systems engineering and project
management.

The overlap was discussed above. Research into the reason for the overlap-
ping of the disciplines turned up information as to how the overlap originat-
ed in the form of the following statement “Driven by cold war pressures to
develop new military systems rapidly, operations research, systems engineer-
ing, and project management resulted from a growing recognition by scien-
tists, engineers and managers that technological systems had grown too
complex for traditional methods of management and development”
(Johnson, 1997)

Thus systems engineering, project management and operations re-
search can be seen as three solutions to the problems of the Cold War by
three different communities of practice (Johnson, 1997) that have continued
to evolve and overlap. In specific organisations, practitioners of one of the
disciplines would perform activities that were not being performed in that

Chapter 21 A framework for understanding systems engineering

318

organisation, but were being performed by a practitioner of a different dis-
cipline in a different organisation (Chapter 19). As a result,

 Today’s organisational paradigm contains three overlapping evolving
disciplines (project management, systems engineering and operations
research) attempting to solve the same problems from three different
perspectives (Johnson, 1997).

 Each discipline is using its own tools and techniques and adopting others
as and when needed.

 Each discipline has instances of poor implementation leaving a vacuum
which another discipline fills. This has created a large degree of overlap
of activities. These boundaries are artificial and often detrimental
(Friedman, 2006).

 The evolution and overlap is continuing. Note the eight boxes contain-
ing the word “management” in Figure 21-2.

 The overlap between operations research and systems engineering was
noted as early as 1954 when Johnson wrote “Operations research is
concerned with the heart of this control problem – how to make sure
that the whole systems works with maximum effectiveness and least
cost” (Johnson, 1954) page xi) a goal that many modern systems engi-
neers would apply to systems engineering. Goode and Machol wrote
that the steps of the operations research and systems engineering pro-
cesses have much in common however there is a fundamental differ-
ence in approach namely “the operations analyst is engineer is primarily
interested in making equipment changes”. A lasting difference was not-
ed by Roy as “Operations research is more likely to be concerned with
systems in being than with operations in prospect” (Roy, 1960) page 22).

By mapping the activities performed by the three disciplines involved in
acquiring and maintaining systems into a two-dimensional map, the frame-
work has confirmed that organisational activities do overlap and has initiat-
ed research into the history of the disciplines which has provided further
information as to how the overlaps began and evolved (Johnson, 1997). The
framework can thus be said to have met this requirement.

21.10.3 The framework shall provide a way to cope with complexity.

Systems engineering has been the promised approach to solving the prob-
lems of complexity for at least 50 years. For example, Chestnut wrote in
1965 “In a society which is producing more people, more materials, more
things, and more information than ever before, systems engineering is indis-
pensable in meeting the challenge of complexity” (Chestnut, 1965) page vii).
About twenty years later, Wymore wrote “Systems engineering is the profes-
sional, intellectual and academic discipline the primary concerns of which are
the analysis and design of large-scale, complex, man/machine systems”

Chapter 21 A framework for understanding systems engineering

319

(Wymore, 1976). Yet instead of solving problems, systems engineering
seems to be making things more and more complex.

Figure 21-11 The process for the engineering of complex systems

Consider the systems acquisition process from the perspective of the
HKMF. The top half of Figure 21-11 represents a reference model for the
activities performed in the acquisition process in the top three layers of the
HKMF. The cycle begins when a high level need for additional enterprise
wide Defence Capability is identified. It is compared with the Capability that
exists or is in the process of being acquired and due to be phased into ser-
vice, and a gap analysis is made to identify missing Capability. Once identi-
fied, the missing Capability is slated to be acquired. To guide the acquisition
process, evaluation criteria are also developed to influence the acquisition
decision. Ideally the gap analysis generally identifies a number of implemen-
tation choices or possible solutions to the problem posed by the missing
Capability. These choices include not only the procurement of new materiel
but changes to doctrine and/or operations and reuse of spares located
somewhere else in the enterprise. Recent changes to the acquisition pro-
cess perform the gap analysis to not only identify current Capability gaps,
but project into the future to identify the most probable gaps, five, ten and
even twenty years into the future producing a lot of PowerPoint engineering
products and science fiction. Thus what has been termed as Enterprise Sys-
tems Engineering and the Engineering of Systems applies across many sys-
tems. It:

 Converts capability needs to requirements.
 Identifies problems.
 Mostly uses soft systems methodologies.

Chapter 21 A framework for understanding systems engineering

320

 Tends to be political rather than technical.
 Employs an enterprise wide architecture framework.
 Comprises the top three layers of the framework.

Glossing over how the decision of which specific choice to implement, a
decision is made and a specific system is defined and enters the acquisition
process, namely:

 Contract(s) are awarded for development of the Capability the system is
to provide;

 Changes are managed throughout the SDLC of the Capability being ac-
quired101.

The lower half of Figure 21-11 represents one instance, namely the par-
ticular system of many such instances of Capability being acquired and up-
graded asynchronously (Chapter 14) in such a manner as to ensure the en-
tire available Capability meets the need(s) all the time. Thus what has been
termed as traditional systems engineering:

 Applies to particular or single systems.
 Converts requirements to Capability.
 Implements solutions.
 Mostly uses hard systems methodologies.
 Tends to be technical rather than political.
 Shows how a particular system fits into the enterprise-wide architecture

framework.
 Takes place in the lowest two layers of the HKMF.

Figure 21-12 A service and support system

101 This is a description of a reference model; the real world is somewhat different.

Chapter 21 A framework for understanding systems engineering

321

If the outward looking perspective shown in Figure 21-11 is replaced by
an external perspective, the situation can be represented in the form of the
reference model shown in Figure 21-12. When drawn in this way several
things become apparent, namely:

 Figure 21-12 is a representation of a complex system, yet is understand-
able in accordance with the Simplicity paradigm (Chapter 18).

 The purpose of drawing the system boundaries for the reference model
shown in Figure 21-12 can be stated as a high level representation of a
system that provides Capability as and when needed. The algorithm of
the system is when a need for Capability arises, a gap analysis is made
between the Capabilities that are available and those planned to go into
service (within their individual SDLC) and a decision is made to fill the
gap by upgrading existing Capability, replacing Capability or providing
new Capability.

 The box marked “gap analysis” could also be labelled “strategic plan-
ning”, the box marked “identification of additional capability needed”
could be labelled “capability development” and the box marked “future
capability” could be labelled as “produce future capability”. In this con-
text, Figure 21-12 is a functional representation of a system.

 System architecting and systems engineering activities can be seen tak-
ing place in three parts of Figure 21-12 (Upgrade, Upgrade or Replace,
and the SDLC).

 The methodologies used in various parts (subsystems) of Figure 21-12
are different (Flood and Jackson, 1991; Shenhar and Bonen, 1997; Mar-
tin, 1994). Strategic planning, capability development and requirements
elicitation in the upper layers of the HKMF tend to be performed in a
pluralist context, while once the requirements for a system are known,
the context generally shifts to unitary and traditional systems engineer-
ing in Layer 2 of the HKMF takes place. Once the context of the problem
is known the appropriate methodology can be determined by the pro-
cess architect (Chapter 19).

After thousands of years of performing physical decompositions of sys-
tems we have a good understanding of the process and can do it very well to
simplify physical systems. We need to develop ways of performing non-
physical decompositions of systems in a similar manner to simplify problems
instead of introducing additional complexity. The framework has helped
identify the problem and methodologies, but much more research needs to
be done to convert complexity to simplicity.

Chapter 21 A framework for understanding systems engineering

322

21.10.4 The framework shall enable the development of a way of
working that lowers the cost of doing work by at least an or-
der of magnitude

Meeting this requirement will take a real reengineering effort (Hammer and
Champy, 1993). It will need a fundamental change in the structure of the
organisation and the partition of work. Understanding the reasons for the
overlapping of roles in the organization allows the roles to be redefined to
minimize the overlaps in the future. Redrawing the boundaries can be im-
plemented as part of an object-oriented approach to building organizations.

As a systems engineer, it is tempting to state that systems engineering is
the methodology to use to reduce the cost of doing work. However, as
Maslow wrote, “I suppose it is tempting, if the only tool you have is a ham-
mer, to treat everything as if it were a nail” (Maslow, 1966) pages 15 and
16). Thus applying systems thinking tells us to use the various methodolo-
gies, tools and techniques used by any of the overlapping activities of sys-
tems engineering, project management, operations research, TQM, and oth-
ers in the area of activity covered by the HKMF. The challenge is to build a
new paradigm for doing work at a lower cost (the system) by mixing compo-
nents from:

 Systems engineering (roles and activities) (Beer, Hall, Jackson, Checkland
etc.);

 Management (Taylor, Ford, Drucker, Peters, Hammer and Champy etc.);
 Quality (Deming, Juran and Crosby etc.);
 Other appropriate sources;
 Some original twists.

Early activities using an object-oriented approach to redraw boundaries
and include prevention into the work process was described as an Anticipa-
tory Testing approach (Kasser, 1995) and achieved promising results as
shown by the following examples of the difference between the current way
of working in general, and the Anticipatory Testing approach. In the period
September – December 1995, the Anticipatory Testing Corporation took part
in three proposal efforts, these were the:

 PK proposal - A 75 page technical proposal (+ other volumes) which was
written both in Maryland and in Florida. The Anticipatory Testing Cor-
poration led the proposal preparation effort which lost by being $10,000
more expensive than the winning offer.

 NOVA proposal - A 100 page technical proposal (+ other volumes) which
was written in Maryland. The Anticipatory Testing Corporation was a
small sub-contractor, had no say in the proposal preparation effort.

 NSF proposal - A 147 page technical proposal (+ other volumes) which
was written both in Maryland and Virginia in December 1995. The An-
ticipatory Testing Corporation led the proposal preparation effort.

Chapter 21 A framework for understanding systems engineering

323

The estimated total costs for each proposal are the costs for labour and
materials assuming everyone who worked on the proposal were paid for all
the hours they put in to preparing the proposal. A comparison of the PK and
NOVA proposals is shown as part of Table 21-3. The 10 to 1 difference in
cost is mostly the result of the Anticipatory Testing management approach
rather than the size or type of the proposals. The NSF proposal provided
another data point which correlates to the PK proposal.

Table 21-3 Comparison of September – December 1995 proposals

Factor NOVA PK NSF

Technical pages 100 75 147

Companies on team 4 2 3

Location MD/DC MD/FL MD/VA

Management approach Conventional Anticipatory
testing

Anticipatory
testing

Estimated total equiva-
lent costs ($US)

$100,000 $10,000 $20,000

The same Anticipatory Testing approach was later used in 2003 in the
SEEC at the UniSA to write the main 32 pages of a proposal102 to provide the
Australian Defence Materiel Organisation (DMO) with a US style coursework
Master of Project Management degree with flexible delivery options. SEEC
had no prior contracts with the DMO, so it was a cold proposal. The proposal
effort began half way into the six-week tendering period and was mostly
written by one person. It was evaluated by the DMO customer as providing
the best value, coming ahead of eight competing Australian universities, and
the contract was worth more than AUD $1,500,000 over three years.

Redrawing boundaries has introduced the concept of the process archi-
tect (Chapter 19) and has also identified defects in the systems engineering
process, which if fixed can substantially contribute to lowering the cost of
doing work. These defects, and how to fix them, were discussed in Chapter
20. Thus while it cannot be claimed that the framework has met this re-
quirement, it has certainly enabled the understanding of ways in which to do
so.

102 The remaining pages were enclosures containing mostly pre-existing materials.

Chapter 21 A framework for understanding systems engineering

324

21.11 Other insight from the framework
The following insight into systems engineering has already been obtained
from the HKMF
 A roadmap for a more complete set of system requirements.
 The place of operations research in the framework.
 The similarity between new product development and systems engi-

neering.
 An explanation of the iterative nature of systems engineering.

Consider each of them in turn.

21.11.1 A roadmap for a more complete set of system requirements

The traditional requirements definition process focuses on the functional
and performance of the system in its operations and maintenance phase.
Treat the HKMF as a landscape underlying a road map, where the activities
performed in the SDLC for a specific system begin in columns A or B103, and
end in columns G or H. This gives an explicit assumption that the system will
pass through other areas during its SDLC. During the requirements defini-
tion phase (Area 2B) determine if any of these areas lay requirements on the
system (e.g. supply chain requirements such as installation, storage, and
transport), and if so include them in the system requirements.

21.11.2 The place of operations research in the framework

As stated above, “Operations research is more likely to be concerned with
systems in being than with operations in prospect” (Roy, 1960) Page 22).
Thus, operations research seems to focus on the areas in column G of the
HKMF.

21.11.3 The similarity between new product development and sys-
tems engineering

Priest and Sánchez provide a description of the product development pro-
cess as follows (Priest and Sánchez, 2001):
 Requirements definition.
 Conceptual design.
 Detailed design.
 Test and evaluation.
 Manufacturing.
 Logistics, supply chain, and environment.

103 See Chapter 28.

Chapter 21 A framework for understanding systems engineering

325

The description of each step in the product development process maps
into the HKMF Layer 2 SDLC yet the words systems engineering do not ap-
pear in the book. For example, the U-diagram (Priest and Sánchez, 2001)
page 64) is equivalent to systems engineering’s V-diagram. This is hardly
surprising as the product development process takes place in HKMF Layer 1
while traditional systems engineering takes place in Layer 2 of the HKMF.

21.11.4 An explanation of the iterative nature of systems engineering

Students have had trouble grasping the concept that systems engineering is
iterative. The Egg diagram (ANSI/EIA-632, 1999) shown in Figure 21-13
shows iterative activities but does not clearly show how the emphasis
changes over the lifecycle. The Functions Requirements Answers and Test
(FRAT) cycle (Mar, 1994) on the other hand provides a clearer perspective in
the context of the HKMF at least for students at the SEEC in the UniSA
(Kasser, et al., 2007)104. For example, the answer to the question of “when
do we do functional analysis?” is “several times”. We use it in the ‘F’ step of
the FRAT cycle in each area of the HKMF.

Figure 21-13 ANSI/EIA-632 egg diagram

21.12 Further Research
The HKMF has helped to develop an understanding of the overlap of organi-
sational activities in the workplace and the problems faced in each area of
the framework. From there it should be possible to use tools and techniques
from all the disciplines in an interdependent manner to design effective or-

104 See Chapter 22 for an example.

Chapter 21 A framework for understanding systems engineering

326

ganisations and reduce the cost of doing work. Early research into redraw-
ing work boundaries has already produced some significant reductions in the
cost of doing work. Examples of further research using this framework
planned and in process at the present time are:
 Mapping tools used for systems engineering into the areas of the

framework. As discussed above, Johnson showed how and why the ac-
tivity known as systems engineering overlaps other organizational activi-
ties (Johnson, 1997). Thus, a multi-methodology for systems engineer-
ing can be the methodologies, tools and techniques used in systems en-
gineering as well as any of the overlapping activities namely the (A).
This puts the considerable number of tools discussed above into the
toolbox of the systems engineer. However, just reusing those tools
from the other overlapping areas of activity is as fraught as the reuse of
software without investigating the context from where the proposed
reusable module was taken from and its suitability for use in the new
context. The danger of such software reuse was demonstrated in the
failure of the maiden flight of the Arianne 5 launcher on 4 June 1996.
Once the context of the problem is known the appropriate methodology
to be investigated for suitability needs to be determined by the process
architect. This research maps systems engineering tools into the HKMF
based on the nature of the problems for which they are used to help
provide solutions. This will be followed by mapping tools used in the
other overlapping disciplines into the framework and developing re-
quirements for an integrated digital environment or network centric
commercial management information system (Tran and Kasser, 2007).

 Plotting the papers published at the annual INCOSE Symposia and re-
gional conferences in the HKMF. In some preliminary research, the top-
ics covered by papers in the Annual International Symposia of the
INCOSE published in 1994, 1997, 2000, 2003 and 2006 were plotted into
the appropriate areas of the HKMF (Tran and Kasser, 2007). When a
paper covered more than one area it was counted in all the areas it cov-
ered. Papers that covered topics such as education or theory of systems
engineering were excluded. The preliminary findings shown in Figure
21-14 indicate that the papers mostly cover the traditional systems en-
gineering Layer 2 (as shown in Figure 21-5) with a growing interest in
Layer 3. This corresponds to growing awareness of the last few years of
the need to consider integrating what used to be considered as separate
systems and are now being called Systems of Systems.

 Identifying common types of project lifecycles other than the classic
Defence SDLC by plotting the path taken by various projects in the
framework. One wonders if the paths would be linear or more like the
route taken by a player in the ‘snakes and ladders’ board game.

 Plotting the ANSI/EIE 632, IEEE 1220, ISO 15288, MIL STD 499C stand-
ards and the CMMI into the HKMF.

Chapter 21 A framework for understanding systems engineering

327

Figure 21-14 Focus of INCOSE symposia papers 1994-2006

 Determination if the Shenhar and Bonen (Shenhar and Bonen, 1997)
taxonomy applies in the upper levels of the framework, or if a different
type of risk should be considered. The lower two levels apply to the
technological implementation phase and technical risk is a logical candi-
date for this dimension. However, for the upper levels the dimension
might be based on contextual risk rather than technical risk.

21.13 Summary
This Chapter applied holistic thinking to systems engineering. This Chapter
focused on what systems engineers do. It documented past research and
success, and the application of an object-oriented approach in a creative and
innovative manner. It listed four requirements for a framework for systems
engineering and discussed the evolution of the HKMF that met the first two
requirements and shows promise of meeting the remaining two require-
ments. In its early days, the HKMF has:
 Provided an understanding of why systems engineers can’t agree on

their roles and activities (Chapter 18).
 Provided an understanding of the reasons for the overlap between sys-

tems engineering and management from the origin of the situation dis-
cussed by (Johnson, 1997).

 Shown a relationship between Enterprise Systems Engineering and the
Engineering of Systems.

Chapter 21 A framework for understanding systems engineering

328

21.14 Conclusions
The conclusions from the research discussed in this book culminating in this
Chapter are:
 Although the HKMF does not currently meet all four requirements for a

framework for understanding systems engineering, it has been able to
provide explanations for some of the problems in today’s systems engi-
neering paradigm. It is thus a useful educational tool and provides a
baseline stepping stone for future research.

 While the HKMF does not provide a theory of systems engineering, it
does provide a platform for further research into the nature of systems
engineering.

 By virtue of the HKMF, systems engineering can fulfil Wymore’s re-
quirement to become a discipline (Wymore, 1994) since systems engi-
neering now meets Kline’s definition of a discipline, namely it has “a
specific area of study, a literature, and a working community of paid
scholars and/or paid practitioners” (Kline, 1995) page 3).

 The HKMF embodies Checkland and Holwell’s (A), (F) and (M)
(Checkland and Holwell, 1998) and hence can be also considered as a
candidate for the first formal representation of research into the disci-
pline of systems engineering. This makes systems engineering a reality
not a myth105!

105 Refer back to Chapter 2.

Chapter 22 LuZ from light to darkness

329

22Luz:	from	light	to	darkness:	lessons	
learned	from	the	solar	system106

In teaching systems engineering the relationship between functions, physical
decomposition and requirements during the process of defining, designing
and developing the system, has been difficult to get across to the students.
While trying to improve the learning process, an explanation of the relation-
ship between functions, physical decomposition and requirements during
the process of defining, designing and developing the system based on a
modification of the FRAT views of a system (Mar, 1994) was tried on under-
graduate students at UniSA in 2006-2007 with positive results (Kasser, et al.,
2007). This Chapter documents the LuZ SEGS-1 system design process in the
form of the FRAT views demonstrating the intertwined relationships be-
tween requirements, functions and their allocation to components at lower
levels of system decomposition. The Chapter also provides examples of al-
ternative choices, discusses them and documents the choices with the rea-
sons for selection. Several lessons learned from the project are also provid-
ed.

22.1 Introduction
The systems engineering process contains the sequence of activities in which
as a response to an identified need, a conceptual system is defined, de-
signed, developed and placed into service. However, in teaching systems
engineering the relationship between functions, physical decomposition and
requirements during the process of defining, designing and developing the
system, has been difficult to get across to the students.

While trying to improve the learning process, an explanation of the rela-
tionship between functions, physical decomposition and requirements dur-
ing the process of defining, designing and developing the system based on a

106 The writing of the paper was made possible by a grant from The Leverhulme Trust
to Cranfield University.

2008

Chapter 22 LuZ from light to darkness

330

modification of the FRAT views of a system (Mar, 1994) was tried on under-
graduate students at UniSA in 2006-2007. During the learning process, the
questions they asked indicated that they were demonstrating a better grasp
of the concepts than had been demonstrated by postgraduate students in
earlier courses (Kasser, et al., 2007).

This Chapter uses the adapted FRAT as a frame in which to describe the
relationship between functions, physical decomposition and requirements
using as an example the definition, design and development project for the
control and electronics subsystem of the LuZ SEGS-1 system in 1981-1983
(Section 11.8.1). The Chapter also provides some lessons learned from the
project.

22.2 The FRAT approach
Functions Requirements Answers and Test (FRAT) (Mar, 1994; Mar and Mo-
rais, 2002) was introduced as four views of a system. However, the “A” and
“T” in FRAT are also useful for investigation of conceptual alternatives which
provides a useful perspective, namely:
 Functions which define what functions the solution must perform (op-

erational and functional perspectives).
 Requirements which define how well each function must be per-

formed107 (quantitative perspective).
 Answers which use the
scientific perspective to search not
only for one solution, but for a
better solution as well and man-
age risk associated with that solu-
tion (descriptive perspectives).
The answer element concludes
with a decision as to which of the
alternative answers identified as
providing a solution to the prob-
lem is to be selected for imple-
mentation.
 Tests which demonstrate
that the selected solution per-

forms the needed functions according to the requirements. The scien-
tific perspective is used to create the tests and the quantitative perspec-
tive to determine the expected test results.

107 The A paradigm definition see Chapter 28.

Figure 22-1The FRAT approach

Chapter 22 LuZ from light to darkness

331

In use, FRAT is not performed in a sequential manner. It is instead per-
formed in an iterative series-parallel manner in which each of the four ele-
ments is both an input to and an output of the others as shown in Figure
22-1 since the findings in one element may affect the contents of another.
The use of FRAT will now be illustrated in the case of the systems develop-
ment process for the world’s first commercial solar electrical power generat-
ing system (SEGS-1). FRAT is used at each level of system elaboration and in
each subsystem as shown in Figure 22-2 or mapped into the problem-solving
view of the Waterfall as shown in Figure 22-3.

Figure 22-2 FRAT elaborated down the hierarchy

22.3 Background to the case study
The LuZ Group, a start-up joint Israel-American venture defined, designed,
developed, installed and operated SEGS-1 in 1981-1983. At the design time,
as the first of its kind, SEGS-1 initially only existed as a vague concept and
met Donaldson and Siegel’s definition of a very high risk project (Donaldson
and Siegel, 1997). SEGS-1 was installed in the Mojave Desert in California
and the Research and Development was in performed in Jerusalem. SEGS-1
was intended to generate electrical power from the sun by focussing the
sun’s rays on about 600 parabolic mirror trough reflector collectors each
about 40 meters long. The operation of each parabolic trough reflector
would be monitored and controlled by a microprocessor based LOC. Each
LOC would control a motor that would position the parabolic mirror, receive
information about the angle of elevation of the mirror and the temperature
of the oil in the pipe positioned at the focus of the trough. Oil would be
pumped through the piping, and as long as the LOC would keep the reflector
pointed at the sun within an accuracy of ±0.2 degrees, the oil would be

Chapter 22 LuZ from light to darkness

332

heated. The hot oil would be pumped around the field and into a heat ex-
changer to generate steam. The steam would then drive a turbine that gen-
erated up to 15 Megawatts of electrical power. Although it would be a com-
plicated system, it would still have a conversion efficiency of about 40%,
greater than any alternative method of harnessing solar energy at the time.

Figure 22-3 Problem-solving view of the waterfall

22.4 At the system level
Consider the system from various perspectives on the perspectives perime-
ter108 (Kasser and Mackley, 2008), the details and insights that emerge in-
clude109:

22.4.1 Big picture perspective

The big picture perspective includes:
 SEGS-1 is the containing or meta-system.
 The system under consideration/discussion is limited to the control and

electronics system (CES) for the array of solar collectors within SEGS-1.
 The CES is a system in itself, and at the same time is a subsystem of

SEGS-1.
 The oil pumping and heat transfer elements of the solar field, and the

array of mirrors, are outside the CES. They interface to the CES elec-

On 108 These perspectives evolved into the Holistic Thinking Perspectives (Kasser,
2013) summarized in section 28.2.
109 This is not meant to be a complete treatment at the system level.

Chapter 22 LuZ from light to darkness

333

tronically via the oil temperature sensors and mechanically via the mo-
tors.

 The solar collection array is to be located in an area the size of a football
field.

 There is an adjacent totally decoupled system, an experimental heliostat
solar power generating field which may provide a false sun via the re-
flection from the central tower and the LOCs may lock on to it and fail to
follow the sun.

 There is no space in the development facility to build and test a large
array of LOCs prior to deployment half way around the world. The de-
sign and test programs will have to compensate for this constraint.

22.4.2 Operational perspective

The CES operates automatically daily as long as there is no major cloud cov-
er. Manual operation takes place in certain scenarios. Each and every mir-
ror can only move in one axis – elevation. The azimuth is fixed approximate-
ly north-south.

22.4.3 Functional perspective

The mirrors deploy to track the sun in the morning as soon as the sun is high
enough to generate positive power, track the sun during the day and stow in
the evening. The CES performs the following functions:
 Stowed. The mirrors are at rest in an upside down position. This mini-

mises dirt collection and sand abrasion of their surfaces which reduce
the reflection coefficient and hence the efficiency of the system. Since
the mirrors also act as radiators when not acting as heaters, stowing the
mirror minimises heat loss to outer space.

 Deploying. The mirrors are moving up from the stowed position to
begin to track (follow) the sun.

 Tracking. The mirrors follow the sun across the sky keeping the oil pipe
at the focus, allowing the sun to heat the oil.

 Stowing. The mirrors are returning to the stow position at the end of
the day.

 Manual movement. The mirrors are moving as commanded by the op-
erator.

 Idle. The mirrors are stationary.
 Data collection, storage and reporting. The system generates, stores

and reports information about the positions of the mirrors, and temper-
atures of the oil at their foci.

22.4.4 Structural perspective

The insight from the structural perspective includes that even though there

Chapter 22 LuZ from light to darkness

334

are about six hundred LOCs, since each LOC will be identical to the others,
there are really only four subsystems. These are the central control station
(CCS), the LOCs, the interconnecting network between the CCS and the LOCs,
and the power distribution system.

22.4.5 Generic perspective

The insights provided by this perspective include:
 The CES architecture is similar to a constellation of low earth orbiting

satellites and a control station. This allows spacecraft telemetry track-
ing and control techniques to be considered as design options.

 The mirror positioning function is similar to a satellite ground station
positioning function.

 Short duration loss of insolation due to intermittent clouds is similar to
the loss of synchronizing pulses in an analogue TV signal, so a flywheel
technique could be employed to compensate.

22.4.6 Continuum perspective

There are at least three design choices,
 One end of the continuum, in which a smart CCS manages the entire

array as well as collecting and storing information about the CES,
 the other end of the continuum in which a dumb CCS collects and stores

information about the system while the LOCs perform the mirror man-
agement functions, and

 a mixture of the previous two, namely somewhere along the continuum.

22.4.7 Temporal perspective

This perspective indicates that the efficiency of SEGS-1 is expected to reduce
over time due to physical effects in subsystems adjacent to the CES (such as
loss of vacuum in the oil pipes). While SEGS-1 can be maintained after
hours, it is undesirable (extra operating cost) and the identification and re-
placement of a failed component should be quick. It would also be desirable
for the CES to be able to predict failing vacuums in the oil pipes so that re-
placements could be scheduled.

22.4.8 Quantitative perspective

This perspective shows the following issues.
 Feasibility study calculations have shown that each 40 Meter long mirror

must be pointed at the sun with an accuracy of ±0.2 degrees.
 The CES uses AC power to move the mirrors and power the LOCs. To be

practical, SEGS-1 must put more power into the electrical power grid
than it takes out.

Chapter 22 LuZ from light to darkness

335

 The more power it can produce, the greater the revenue to the inves-
tors who will own SEGS-1.

22.4.9 Scientific perspective

Alternative candidate solutions for the CCS are minicomputer or microcom-
puter based.

22.5 FRAT at the system level
Applying FRAT at the CES system level we have110:

22.5.1 Functions

The control function includes the following:
 Deploying the entire array of mirrors when the power to be generated

by SEGS-1 is more than the power to be used.
 Tracking when and while the sun shines; idle for periods of cloud cover.
 Stowing the array when the power to be generated by SEGS-1 is less

than the power to be used.
 Gathering, displaying and storing status information about the opera-

tion of SEGS-1.

22.5.2 Requirements

There are two performance requirements on the CES namely111:

1. In operation, SEGS-1 shall generate more power than it uses.
2. SEGS-1 shall generate the maximum possible amount of power each

day.

22.5.3 Answers

The key to meeting the requirements is the accuracy of positioning the mir-
rors. Calculations have shown that the derived requirement to be levied on
the mirror pointing function is to point the mirror at the sun with an allowa-

110 Note there are Meta-system considerations as well in the discussion since they
affect the control functions.
111 These requirements have not been stated in numerical terms. The feasibility
study has shown that the system can potentially generate 15 Megawatts of power.
However, the power it uses to do that will be a function of the motors, the power
distribution losses, etc. That were unknown at the time the requirements were stat-
ed. Stating them as goals in this manner means that once the design has been made,
the ‘deploy’ and ‘stow’ commands can be based on calculations or on the amount of
solar insolation.

Chapter 22 LuZ from light to darkness

336

ble offset of only ±0.2 degrees. The following alternative solution options
for meeting this requirement were considered:
 A tight control loop which would depend on accurate system infor-

mation (tight tolerances) about the longitude, latitude, and mirror
alignment with respect to north of the field; angle of sun sensor with re-
spect to mirror axis, and other pertinent parameters for each mirror.

 A sloppy control loop which would not require the tight tolerances of
the previous option, with self-regulating components to maintain the
system in the steady tracking state.

Some of the factors affecting the choice were as follows112:

 While one LOC had the capability to control more than one mirror, the
system architecture was simpler if each LOC only had to interface to a
single mirror. In addition, the embedded software would have fewer in-
structions.

 The amount of functionality in the LOC microprocessor was yet to be
determined.

 The sun seems to travel across the sky at a rate of 15 degrees an hour,
or one degree in four minutes. The mirrors move slowly enough that
the position control algorithm could be located in either the LOCs or in
the central station.

 The quantitative perspective shows that assuming that each sun-sensor
has a slightly different offset when installed on its mirror, if the position
control algorithm (CES function) is located in the CCS (physical compo-
nent), it will have to compute the desired elevation angles for each mir-
ror in the entire array and update the LOCs within 24 seconds (require-
ment on CCS). This means that the CCS and LOC processor software cy-
cle times, the network data rates, message lengths and other parame-
ters will have to be determined to ensure that the CES can meet the per-
formance requirement.

 If the position control algorithm (CES function) is located in the LOC
(physical component) number of instructions in the software will have
to be estimated to ensure that the microprocessor cycle time is fast
enough (requirement on LOC) to perform the computations.

 The angle between the array of mirrors and due north is difficult to de-
termine to decimal point accuracy.

112 There were other decisions to be made that have not been included in this ex-
tract. One such decision early in the system design phase was should one LOC con-
trol a single mirror or should it control several mirrors? And if so, how many?

Chapter 22 LuZ from light to darkness

337

The functional analysis was first performed for a single function in the
CCS controlling all the LOCs and as shown below was found to be problemat-
ic with the microprocessor solution. However, instead of choosing the mini-
computer alternative, an innovative partitioning approach was then postu-
lated (scientific perspective) coming from the generic perspective on the
similarity between the CES and a constellation of satellites. This physical
allocation split the functionality between the LOC and the CCS (with minimal
coupling) enabling the microprocessor based CCS solution.

The design decision was to develop a physical architecture in which one
LOC controlled one mirror, and use the sloppy algorithm using a self-
regulating approach; partitioning the control system functionality such that
the responsibility for making the decision to deploy or stow resided in the
CCS, but the position control function of each mirror was the responsibility
of its LOC.

This approach eliminated many of the calculations on the data rates and
tolerances that would otherwise have been required. The only serious tech-
nical risk associated with this choice was that the chosen microprocessor
cycle time might not be sufficient.

22.5.4 Test

Previous experience with microprocessor-based satellite ground station an-
tenna controllers indicated that this risk had a very low probability of occur-
rence. Subsequent breadboarding verified that the LOC could do the task.

22.6 FRAT at the subsystem level
The functionality and requirements for the CES are now expanded at the
subsystem level. This process contains steps in which options are deter-
mined and choices made. Sometimes trade-offs have to be made between
the locations of functionality, that is, to which part of which subsystem the
functionality to meet a specific CES requirement is allocated.

A selection of the various physical choices to be made in allocating CES
functionality to the physical subsystems, namely designing the CCS, network
and power distribution subsystems is shown in Figure 22-4113. These choices
were:

1. CCS. The physical alternatives were to use a mini- or microcomput-
er.

2. The Network. The physical alternatives were to use an Ethernet or
twisted pair shielded wire.

113 An alternative depiction is a decision tree.

Chapter 22 LuZ from light to darkness

338

Figure 22-4 Part of the design choices at the subsystem level

3. The Power distribution. The alternatives were to distribute power
to the LOCs at 110V, 240V or 440V using single or three phases.

4. The LOC. The LOC was the most complex subsystem. Some of the
physical alternatives are shown separately in Figure 22-5 to keep
the figures simple.

Figure 22-5 Part of the design choices for the LOC

Consider the application of FRAT to the network, CCS, power distribu-
tion and LOC subsystems in making those choices.

22.6.1 FRAT applied to the CCS

Applying FRAT at the subsystem level to the CCS we had:

22.6.1.1 Functions

The functions include:
 Automatically deploying and stowing the LOCs at the appropriate times

of day.
 Acting as an operator interface to the array of mirrors allowing the op-

erator to command and interrogate the LOCs.
 Displaying CES status information.

Chapter 22 LuZ from light to darkness

339

 Storing CES status information on a 10 Megabyte hard drive, offloading
the data on magnetic media for archival storage offsite should the func-
tion be desired by the system developer or customer in the future114.

22.6.1.2 Requirements

The requirements inherited from the CES level included:
 Determination of sun elevation angle for the field throughout the day.
 Commanding and interrogating the LOCs individually or en-masse.
 Displaying CES status information in a user friendly manner (location on

the control screen, font size, colour, etc.)
 Sounding alarms when various conditions exist.

Requirements on the CCS to display information in various colours de-
pending on the states of the CES and sounding the alarms are ergonomic
requirements, not functional and performance. They are inherited from the
class of system to which the CCS belongs.

There were no detailed requirements for the actual operator commands
and display of information. This functionality evolved in a rapid prototyping
environment; the designers and systems engineer evolved the command
and displays starting with a concept of “what and how” and working with
the software to modify it as experience was gained. Ideas from the adjacent
Heliostat system were considered and included as appropriate. The re-
quirements were written down eventually for the purpose of documenting
the actual functionality achieved rather than documenting what functionali-
ty would have to be achieved115.

22.6.1.3 Answers

The choices of design for the physical allocation of the CCS functionality
were to use a minicomputer equivalent to the Hewlett Packard 3000, the
Apple Lisa and a Z-80 based S-100 microcomputer116. However the sloppy
control split function approach reduced the workload of the CS to the point
where a Z-80 based S-100 Bus microcomputer117 could do the job, saving the
project around $300,000 for each of the three CCS that would be needed;

114 The hardware constraints were included in the functional analysis because that
was the state of the art at the time.
115 Considering the situation with hindsight, it would have been more appropriate to
write a test procedure that confirmed the functionality rather than document the
functionality in a traditional requirements document.
116 The IBM PC wasn’t even a gleam in some engineer’s eye at that time, and the
Apple Lisa was a not very serious candidate.
117 With a new colour display card to be designed since one was not available as
COTS.

Chapter 22 LuZ from light to darkness

340

namely $900,000118. Given that the design team had experience program-
ming the Z-80119, and the need for cost saving (important to a start-up com-
pany), the design choice was to go with the Z-80 microcomputer.

The CCS software was portioned into Builds using the cataract develop-
ment methodology (Chapter 13). The Builds were designed to increase au-
tomated functionality as more was learned about the operation of the sys-
tem. Remember this was a ‘first of its kind’ system. Thus Build 0 would pro-
vide the basic operator interface functionality allowing the system to be op-
erated and tested manually. Build 1 would provide the initial automated
functionality and future builds would incorporate additional functionally,
transferring functions commonly performed by the operator into automatic
sequences and any other approved change requests. Since delivery to the
customer was dependent on the dates of installation of the mechanical and
thermal adjacent SEGS-1 subsystems and not on the date of completion of
the software, this approach mitigated the risk of schedule slips due to soft-
ware related problems and ensured that the CES would perform its basic
functionality when delivered. As it happened, the CES was delivered with
Build 1 fully operational.

22.6.1.4 Test

The design decision was supported by experience and calculations that the
Z-80 microcomputer was fast enough to do the job.

22.6.2 FRAT applied to the network subsystem

Consider the application of FRAT to the network, subsystem.

22.6.2.1 Functions

The functions were the communication between the CCS and LOCs.

22.6.2.2 Requirements

The requirements included:
 Low data rates between the central station and the LOC due to the

sloppy algorithm and slow rate of change of both the sun angle and mir-
ror movement

 Operate no matter what the electromagnetic interference (EMI) envi-
ronment. The degree of EMI was unknown; there could be thunder-
storm induced transients or induction of signals into the underground
cable network from nearby local radio stations. As such, from the quan-

118 One for software development, one for operations in the field and one as an op-
erational spare.
119 In the form of the Intel 8080.

Chapter 22 LuZ from light to darkness

341

titative STP there was little point in putting any numbers into the re-
quirements.

22.6.2.3 Answers

The alternative physical design choices to perform the functions to the re-
quirements were coaxial cable-based Ethernet, then in its infancy and hence
high risk, or a low data rate twisted pair shield cable, a lower risk option.
The low data rates meant that the design need not use Ethernet, nor did it
need to compensate for signal deterioration in long coaxial cable runs.
There was also a choice in which type of communications protocol to use,
the choices being between a polled approach in which the CCS interrogated
each LOC in turn sequentially and some kind of random access protocol.
This choice was independent of the physical design. The design decision
allocating the functions to physical components was to use twisted shielded
pair cable. In addition, the communications was implemented using:
 A polling protocol in which the central station polled each LOC in turn.
 The data format was short commands and responses in ASCII at 1200

Baud.

22.6.2.4 Test

The decisions were verified by a calculation that showed that 1200 Baud was
fast enough that the CCS could poll and receive a response from each LOC
within the predetermined minimum cycle time120. This design (functions to
physical allocation) approach also allowed a then-common hand-held ASCII
data terminal to be used to troubleshoot communications problems because
the technician could bridge the cable and monitor network traffic, or as ap-
propriate, disconnect the network cable and transmit signals to a LOC or the
central station and see the response on the hand display.

22.6.3 FRAT applied to power distribution

Applying FRAT to the power distribution subsystem we had:

22.6.3.1 Functions

The distribution of power to the array of motors and LOCs.

22.6.3.2 Requirements

The requirements included:
 The power distribution subsystem shall distribute AC power to the LOCs.

120 Mitigating this risk was the fact that the rate could have been lowered to 300
Baud which would still have been fast enough to provide status information. Howev-
er, it would have been slow from an operator’s point of view.

Chapter 22 LuZ from light to darkness

342

22.6.3.3 Answers

The physical implementation choices were to distribute power to the LOCs
at 110V, 240V or 440V using single or three-phase power. Factors affecting
the choice included the impedance losses in the power cables - the higher
the voltage, the lower the losses. The design methodology employed was a
problem avoidance approach. Early prototyping of a 240V three-phase ap-
proach had showed that the silicon controlled rectifiers had a high failure
rate – a high-risk situation. Instead of investigating the causes of these fail-
ures, we used continuum thinking to adopt an alternative inherently low risk
mixed voltage distribution approach as follows. The bulk of the power
would be distributed at 440V into the field to strategically located power
distribution units (PDU). The loading on the supply phases was balanced by
using different phases in different parts of the field. The PDUs would con-
tain a step down 440/110V isolation transformer and transient suppressor.
Power from the PDUs would be distributed to a bank of LOCs at 110V
(±10%). This design choice had the following benefits.
 The use of 110V single phase motors which were testable in Israel using

a standard 240/110 V step down transformer.
 The step down transformers in the PDUs also acted as high frequency

transient chokes.
 The 110V distribution allowed a single power line to be routed to the

LOCS for supplying power to both the motors and the LOC internal elec-
tronics.

22.6.3.4 Test

The feasibility of the decision was verified by analysis at the design phase
and subsequent operation at the acceptance test121.

22.7 The LOC subsystem
The LOC became the heart of the system and is discussed more thoroughly
than the previous subsystems in this paper. Insights and observations from
considering the LOC from various perspectives include:

121 Would further detailed analyses have changed the geometry of the power distri-
bution and perhaps resulted in lower cable impedance losses? Perhaps. However
the customer was satisfied with the architecture and the system was deployed to
schedule, so the solution was a correct one. This does not mean that these detailed
analyses should not be made sometime in the future when resources become availa-
ble, and the results of the analyses be used in the design of follow-on systems.

Chapter 22 LuZ from light to darkness

343

22.7.1 Operational perspective

Each LOC operates in a self-regulating automatic manner such that the mir-
ror it is controlling, is always pointing at the sun. The operator at the CCS or
the automatic function in the CCS commands and interrogates the LOC in
accordance with the operating scenarios alluded to in the system level oper-
ational perspective (not provided in this Chapter).

22.7.2 Functional perspective

Each LOC performs the following functions:
 Deploy. Upon receipt of a Deploy command, deploys the mirror to the

commanded position. Note the position has been determined by the
CCS to be slightly lower than the calculated sun elevation angle.

 Search. Upon reaching the deploy position, moves the mirror forwards
a few degrees until the sun sensor acquires the sun.

 Track. Once the sun sensor has acquired the sun, moves the mirror
forwards past the sun, stops and waits for the sun to catch up. When
the sun catches up, moves it forwards past the sun again and waits, and
so on until evening. This function is self-regulating and is independent
of the communication link to the CCS.

 Loss of sun. Flywheels as if it was tracking for a short period of time.
This function came from the generic perspective; the length of the
‘short time’ came from the quantitative perspective.

 Idle. Does not move until told otherwise.
 Command and control. Moves the mirror and provides oil temperature,

and functional mode (deploy, search, track, loss of sun and idle) and po-
sition information to the CCS upon receipt of the appropriate com-
mands.

22.7.3 Big picture perspective

The LOC subsystem interfaces to a sun sensor, a position sensor and the
motor on the adjacent mechanical mirror system as well as a temperature
senor in the adjacent heat flow system.

The perspective also points out the risk potential for a mixture of vari-
ous problems with either adjacent systems or internal subsystems as fol-
lows:

 Incorrect interfaces since the mirrors would be coming from Germany.
 Incorrect interfaces since the position sensors would be subcontracted

to a Japanese manufacturer.
 The LOCs would be integrated in Jerusalem, from parts purchased both

in Jerusalem and California.

Chapter 22 LuZ from light to darkness

344

 Cabinets and housings were custom made in Israel. Manufacturing tol-
erances were loose so that mechanical parts were not always inter-
changeable.

 Power transformers were made in Tel Aviv. The quality as it turned out
was excellent.

 Undesired emergent properties. There was no space to build, store and
test a full array of more than 600 LOCs in Jerusalem. Anticipating unde-
sired emergent properties to appear after installation in the field122, the
LOC firmware would be in EPROMS to allow for speedy upgrades. Con-
sequently, there was a configuration risk of not having future field-
installed upgrades in-place, and subsequent reporting of already fixed
problems.

 The LOCs would contain unique identifiers in chip headers. Each would
have to be installed in the designated LOC as part of the system integra-
tion in the field. If the headers were to be installed in the wrong LOCs,
the CCS would experience problems.

 The communication cables would be purchased in the USA, manufac-
tured in California and shipped to the site. This provided the only prob-
lem123 experienced in the CES (Section 11.8.1). The cables were fitted
with push-on connectors for fast and error-free connection. However,
the cables used in Jerusalem were flexible and push-on connections
stayed in place. The cables purchased in California were not identical
and were less flexible. Slowly over time the tension in the cable caused
it to pull away from its printed circuit board mounted socket. However,
once the cause was determined, the fix was obvious124.

22.7.4 Structural perspective

The LOC architecture was that of a standard embedded digital microproces-
sor with analogue interfaces to the sun sensor, oil temperature sensor, a
digital interface to the mirror elevation angle sensor, a serial balanced digital
driver interface to the network, and a high-voltage control interface to the
motor control circuits. The LOC also contained a COTS alternating current
(AC) power supply.

122 These emergent properties would be a property of the large array and would not
be seen in development.
123 The sun sensor was produced by the Physics department who were also responsi-
ble for the heat flow subsystem, so technically, the sun sensor problem in section
11.8.1 was a heat flow subsystem problem
124 Tie it down so it wouldn’t lift off.

Chapter 22 LuZ from light to darkness

345

22.7.5 Generic perspective

The LOC is an electronic device in an outdoor desert environment. As such it
inherits environmental requirements from that domain.

22.7.6 Continuum perspective

The LOC is not just part of one system, it can be considered as a subsystem
of two different systems125, namely:

1. The CES, and
2. The mirror system which contains the LOC, the mirror, the motor

that moves the mirror, the mirror elevation angle position sensor,
the heat flow elements at the focus of the mirror and the oils tem-
perature sensor in the heat flow element at the centre of the mir-
ror.

In addition, subsystem boundaries can be drawn in various ways de-
pending on the interest, for example, the mirrors are part of the SEGS-1 me-
chanical subsystem, and the heat flow elements are part of the SEGS-1 heat
flow subsystem.

22.7.7 Temporal perspective

The LOC need not operate 24 hours per day seven days per week since the
solar array did not generate power at night. However, failures should be
readily apparent to the operator so that replacements could be made speed-
ily. Down time is loss of revenue time.

22.7.8 Quantitative perspective

Sun movement is relatively slow and is measured in degrees of arc/minutes.
The rate of collecting telemetry information from the LOCS can be just as
slow. Thus exact data rates need not be specified at the system conceptual
design review. The test function at the subsystem level will later show that
the data rate selected would be/was fast enough for this situation.

22.7.9 Applying FRAT to the LOC

Applying FRAT at the subsystem level to the LOCs we have:

125 Note that during the design process both views were employed at different times
for different purposes.

Chapter 22 LuZ from light to darkness

346

22.7.9.1 Functions

The functions are as described in the functional and performance perspec-
tive above.

22.7.9.2 Requirements

Some of the LOC requirements are:
 The mirror position accuracy requirement is inherited from the CES level

requirement, namely ±0.2 degrees.
 The environmental requirements are inherited from the standard out-

door desert requirements.
 The data transfer rate for command and control between the CCS and

the LOC are low due to the sloppy algorithm for controlling the LOC
pointing angle.

22.7.9.3 Answers

Some of the design options for physically implementing the LOC functionality
are shown in Figure 22-5. Design decisions at this level were made between
alternative sensors namely:
 Position sensor. The function is sensing the position of the mirror, the

physical choice was between:

1. some sort of pulse counter which would count revolutions of the
motor from the stow potion and compute the angle reached,

2. an analogue potentiometer in which the resistance would be a
function of the angle of elevation and

3. a digital sensor which provided position information in Grey code.

Each option was considered as summarized herein.

 The pulse counter needed some mechanical construction and electronic
circuitry and was relatively low risk. The cost was unknown.

 The potentiometer was open to problems in the future due to wear and
tear on the track, since the same section would be traversed daily.
There was no information on how readily available components be-
haved under these conditions. The use of high reliability potentiome-
ters from missiles was considered, but their operating conditions were
very different since a missile spends most of its time in storage and just
a few minutes in flight. In addition the interface would have to be indi-
vidually calibrated for each sensor in the field after installation. From
the temporal perspective, if the sensor degraded in use to the point of
replacement, the replacement was expected to be costly and since they
could all be expected to fail within the same time frame, the system
would have to operate in a degraded mode for some time, while the re-
placements were manufactured, shipped and installed.

Chapter 22 LuZ from light to darkness

347

 The optical sensor option was the simplest. The Grey code provided a
simple unambiguous position with a digital interface.

The problem of coupling the position sensor to the mirror should the
pulse counter not be chosen, was solved by “Rogo”, the head of the Me-
chanical Department who conceptualized hanging a weight on the position
encoder shaft so that it acted as a pendulum. Movement of the mirror
would change the angle between the pendulum and the fixed point on the
mirror. This design could be used with both the potentiometer and the opti-
cal sensor. The pendulum and position encoder were encapsulated in an
environment proof container that could easily be interfaced to the mirror.

The cost of the selected option was $300 per unit, which was not cheap
when the total number to be purchased was 600 or so. However, the sim-
plicity of the design, coupled with the low risk made it the obvious choice at
the time. Since the department resources and schedule were limited and an
investigation of the alternative choices would take time with no guarantee
of lower cost (costs of the alternative sensors and signal processing compo-
nents, not to mention assembly costs), the optical sensor option was chosen
and a contract awarded for a few prototypes, and once they had been test-
ed, contract for the manufacture and shipping of the remainder to the instal-
lation site was awarded126.

 Sun sensor. The sensor was a standard two-diode sensor shown in Fig-
ure 11-4, but there was no specification correlating the incident light to
the diode characteristics. This was a major risk because pointing accu-
racy had a tight tolerance and was critical to the success of the system
and there were also no vibration specifications for the mirrors as a re-
sult of movement or for any other cause. A “specification free design”
was bread boarded, tested and put into service, but there was no firm
information as to the design margin.

22.7.9.4 Test

The sun sensor electronic interface was tested in the laboratory and the em-
bedded software shown to work under all test conditions so the system was
passed for deployment. Mind you, as it turned out there was a preventable
problem with the sun sensors (Section 11.8.1). The sun sensor used a lens to
focus the sun onto the pair of photo diodes. During the assembly process
the diodes were glued to a base plate with transparent glue. The physics
department who were building the sun sensors did not place a manufactur-
ing process requirement that there be no glue on the side of the diode illu-

126 Had the quantity to be manufactured been much greater, a more detailed design
and cost analysis might have had to be done to determine the lowest total cost.

Chapter 22 LuZ from light to darkness

348

minated by the sun. After all, the glue was transparent. A year or so later,
they found that the glue slowly became opaque when subjected daily to the
very high temperature at the focal point of the lens. This phenomenon re-
sulted in the need to replace all the sun sensors. From a manufacturing per-
spective, there was little difference in mounting the diodes if the glue could
or could not be allowed to cover the face of the diode, just a matter of care
and a few extra minutes of time. Nobody in the physics department which
designed and produced the sun sensors employed the temporal perspective
to ask about possible changes to the characteristics of the glue over long
periods of time under high temperature. If the requirement had been
placed on the process, not to allow glue on the face of the diode, the charac-
teristics of the glue under the high temperature conditions would not have
mattered and the expensive sun-sensor replacements would have been
avoided. This is an example of introducing an unnecessary failure mode by
not utilizing the “don’t cares” due to the lack of system thinking. Thus the
lesson learned is that if it doesn’t make any difference don’t do it.

22.8 Discussion on the use of FRAT
The use of the modified FRAT concept has shown how requirements, func-
tional analyses and physical allocation flow from the system to subsystem as
the design progresses. One example is that of mirror positioning. The sys-
tem requirement was to generate power from the sun. This translated to
moving and positioning function and a pointing accuracy derived require-
ment of ±0.2 degrees. Further functional decomposition as part of the de-
sign process split the moving and positioning function between two physical
subsystems the CCS and the LOC. The CCS functionality determined when to
deploy and stow the mirrors, while the LOC functionality kept it positioned
to meet the performance requirement. The pointing accuracy requirement
was thus implemented in the LOC. Further decisions as to what type of
physical element would perform the mirror position sensing function were
also shown.

22.9 Lessons learned from the project
This last part of the Chapter contains some of the lessons learned from this
project. A number of instances are already documented and references are
provided in those instances. The lessons learned from this project include:
 KISSE or keep it simple, systems engineer!
 Focus on people not on process.
 Keep the number of requirements small and pertinent to the mission.
 Requirements are only a communications tool.

Chapter 22 LuZ from light to darkness

349

 Functional decomposition creates physical architecture and drives de-
sign.

 Avoid analysis paralysis.
 View the problem from several perspectives or frames.
 Current ‘don’t cares’ can hurt you in the future.
 Design for test and maintenance.
 Reuse of components simplifies system software as well as hardware.

Consider each in turn.

22.9.1 KISSE or keep it simple, systems engineer!

Was this a system, or a system of systems? System boundaries are in the
eye of the beholder (Churchman, 1979) page 91). A LOC was a system in
itself containing a mixture of COTS and custom components; the whole array
of LOCs was a system. On the other hand, the array of LOCs, communica-
tions network and the Central Station was a system. Not only that, but a
single LOC and the sensors mounted on its mirror also comprised a system
and the whole field was another system. How many systems actually were
there? The answer to the two questions is “it depends”. System boundaries
are drawn for a purpose and represent an abstraction of part of the real
world for some purpose. They should be used appropriately.

22.9.2 Focus on people not on process

The expertise must be intuitive in the person, not in the manual or in the
Standard in other words, it must be “a philosophy and a way of life”
(Hitchins, 1998). A process standard would probably have killed the project.
Note in the discussions above, how trade-off analysis for choosing physical
options to meet required functionality were completed only to the point of
determining the feasibility of the option, and not down to crossing the last ‘t’
and dotting the last ‘i’. This was because the systems engineer knew when
to stop analysing and start deciding. This lesson supports the statement by
Robert Frosh, when he was Assistant Secretary to the US Navy who stated:
“Systems, even very large systems, are not developed by the tools of systems
engineering, but only by the engineers using the tools” (Frosch, 1969).

22.9.3 Keep the number of requirements small and pertinent to the
mission

There were only two top-level requirements. If there is consensus on what
the system is to do, don’t specify details that can best be left to designers
and other stakeholders to determine interactively further down the lifecycle.

Chapter 22 LuZ from light to darkness

350

22.9.4 Requirements are only a communications tool

If there is a clear understanding of the purpose of the system you may not
need requirements (Chapter 16). The engineers and technicians at LuZ
spoke various combinations of Russian, English, French, Romanian and He-
brew, because most were immigrants and there were times when there was
no common language in a meeting. Yet in spite of these communications
difficulties, and the lack of written requirements, we knew what we were
building and the project succeeded127.

22.9.5 Functional decomposition creates physical architecture and
drives design

Consider alternate decompositions at design time. The rules for functional
decomposition are (Section 18.9):
 Minimize coupling and maximize the cohesion.
 Consider the operator as part of the system.
 Use self-regulating subsystems.
 Use railroad buffers for signal passing.

Note use cases and concepts of operations describe functions. For ex-
ample, we considered various functional options for the mirror positioning
functionality and exposed the advantages and disadvantages of each option.
The eventual choice was to separate the sun elevation angle calculation
function from the mirror pointing functions. This allowed one function to be
located in the CCS and the other in the LOC. Since the mirror pointing func-
tion was designed as a self-regulating function, there was minimal coupling
between the two functions (i.e. just the command to deploy, and the neces-
sary angle). It also allowed us to complete the software ahead of schedule.

22.9.6 Avoid analysis paralysis

There is no need to continue an analysis past the point of identification of
non-feasibility.

22.9.7 View the problem from several perspectives or frames

Use generic thinking. Someone out there has probably already solved a part
of the problem or even your entire problem. This is the core concept in TRIZ
(Theory of Inventive Problem Solving) in which it is stated as “Somebody
someplace has already solved this problem (or one very similar to it.) Creativ-
ity is now finding that solution and adapting it to this particular problem”
(Barry, et al., 2007). However, you may have to redefine your problem to

127 Delivered on time within budget and performed to requirements.

Chapter 22 LuZ from light to darkness

351

use that solution to avoid unnecessary complicating the situation. The ge-
neric perspective helps to identify candidate solutions for pattern matching
to your situation.

22.9.8 Current ‘don’t cares’ can hurt you in the future

Don’t add unnecessary parts even if they appear not to make a difference at
design time. The sun sensor glue was an unnecessary part when placed in
front of the photo diode as discussed above.

22.9.9 Design for test and maintenance

Test and integration needs to be considered at production process design
time as well as product design time. Add test points to both the hardware
and software. Embedded software in-circuit emulation will not find all prob-
lems. Choose a software architecture such as a ‘state machine’ which can be
thoroughly tested and use buffers to store data being passed between func-
tions for simplifying testing.

22.9.10 Reuse of components simplifies system software as well as
hardware

Reuse of the mirror-pointing algorithm in each LOC simplified the CES de-
sign. This was an object-oriented approach inherited from hardware exper-
tise.

22.10 Meta-lessons learned
Now just because these lessons were learned from this system, they should
not be allied indiscriminately to all future systems. Note, there are two
kinds of meta-lessons to be learnt,
 Some of these lessons apply to all projects, and
 Some of these lessons apply to some projects.

Think before you apply them, and ask yourself the following two ques-
tions.

 Why did it work here?
 What is different about your project?

22.11 Summary
This Chapter has documented the LuZ SEGS-1 system design process in the
form of the FRAT views demonstrating the intertwined relationships be-
tween requirements, functions and their allocation to components at lower
levels of system decomposition. The Chapter provided examples of alterna-

Chapter 22 LuZ from light to darkness

352

tive choices, discussed them and documented the choice with the reasons
for selection. Several lessons learned from the project were also provided.

Chapter 23 Reengineering systems engineering

353

23Reengineering	systems	
engineering

This Chapter documents:

1. using systems engineering in the early phases of the SDLC to devel-
op a conceptual system – the system being developed is a SEBoK
and

2. the findings and opportunities generated in those early phases.

The approach was based on identifying activities specific to systems en-
gineering, as opposed to the broad raft of activities that systems engineers
might undertake, according to their role. An activity-based definition of sys-
tems engineering vs. non-systems engineering role-based definition was
developed.

The second part of the Chapter identifies five types of systems engi-
neers, discusses the evolution of systems engineering in terms of those five
types, and hypothesizes that a major cause of the failure of systems engi-
neering is the allocation of inappropriate types of systems engineers to early
lifecycle phase systems engineering activities. The Chapter concludes with
some insights and recommendations for further study.

23.1 Evolution of the role of systems engineering
Descriptions of systems engineering currently comprise different interpreta-
tions of the activities known as systems engineering and the broad raft of
activities that systems engineers might undertake according to their role in
the workplace. This quagmire has developed because different users of the
term ‘systems engineering’ for almost 50 years have chosen or perceived
different meanings. For example, one comment from 1960 was “Despite the
difficulties of finding a universally accepted definition of systems engineer-

2009

Chapter 23 Reengineering systems engineering

354

ing128, it is fair to say that the systems engineer is the man who is generally
responsible for the over-all planning, design, testing, and production of to-
day’s automatic and semi-automatic systems” (Chapanis, 1960) page 357).
Jenkins expanded that comment into the following 12 roles of the systems
engineer (Jenkins, 1969) page 164):

1. He tries to distinguish the wood from the trees – what’s it all about?
2. He stimulates discussion about objectives – obtains agreement

about objectives.
3. He communicates the finally agreed objectives to all concerned so

that their co-operation can be relied upon.
4. He always takes an overall view of the project and sees that tech-

niques are used sensibly.
5. By his overall approach, he ties together the various specializations

needed for model building.
6. He decides carefully when an activity stops.
7. He asks for more work to be done in areas which are sensitive to

cost.
8. He challenges the assumptions on which the optimization is based.
9. He sees that the project is planned to a schedule, that priorities are

decided, tasks allocated, and above all that the project is finished
on time.

10. He takes great pains to explain carefully what the systems project
has achieved, and presents a well-argued and well-documented
case for implementation.

11. He ensures that the users of the operational system are properly
briefed and well trained.

12. He makes a thorough retrospective analysis of systems perfor-
mance.

Seven of these roles of the systems engineer (activities performed by a
person with the title systems engineer) overlap the role of the project man-
ager (activities performed by a person with the title project manager). Re-
search into the reason for the overlapping of the disciplines turned up in-
formation as to how the overlap originated in the form of the following
statement. “Driven by cold war pressures to develop new military systems
rapidly, operations research, systems engineering, and project management
resulted from a growing recognition by scientists, engineers and managers
that technological systems had grown too complex for traditional methods of
management and development” (Johnson, 1997). Thus systems engineering,
project management and operations research can be seen as three solutions

128 Fifty years later, nothing has changed in that respect.

Chapter 23 Reengineering systems engineering

355

to the problems posed by complex systems in the Cold War by three differ-
ent communities of practice (Johnson, 1997) that have continued to evolve
and overlap. Some of the evolution in systems engineering can be seen in
the very little overlap between the 12 roles documented by Jenkins and the
following 12 systems engineering roles documented by Sheard (Sheard,
1996):

1. Requirements Owner (RO) Role. Requirements Own-
er/requirements manager, allocator, and maintainer/specifications
writer or owner/developer of functional architecture/developer of
system and subsystem requirements from customer needs.

2. System Designer (SD) Role. System Designer/owner of “system”
product/chief engineer/system architect/developer of design archi-
tecture/specialty engineer (some, such as human-computer inter-
face designers)/“keepers of the holy vision” (Boehm, 1994).

3. System Analyst (SA) Role. System Analyst/performance model-
er/keeper of technical budgets/system modeler and simulator/risk
modeler/specialty engineer (some, such as electromagnetic com-
patibility analysts).

4. Validation and Verification (VV) Role. Validation and Verification
engineer/test planner/owner of system test program/system selloff
engineer. VV engineers plan and implement the system

5. Logistics and Operations (LO) Role. Logistics, Operations, mainte-
nance, and disposal engineer/developer of users’ manuals and op-
erator training materials.

6. Glue (G) Role. Owner of “Glue” among subsystems/system integra-
tor/owner of internal interfaces/seeker of issues that fall “in the
cracks”/risk identifier/“technical conscience of the program”.

7. Customer Interface (CI) Role. Customer Interface/customer advo-
cate/customer surrogate/customer contact.

8. Technical Manager (TM) Role. Technical Manager/planner, sched-
uler, and tracker of technical tasks/ owner of risk management
plan/product manager/product engineer.

9. Information Manager (IM) Role. Information Manager (including
configuration management, data management, and metrics).

10. Process Engineer (PE) Role. Process engineer/business process
reengineer/business analyst/owner of the systems engineering pro-
cess.

11. Coordinator (CO) Role. Coordinator of the disciplines/tiger team
head/head of integrated product teams (IPTs)/system issue resolv-
er.

12. “Classified Ads Systems Engineering” (CA) Role. This role was add-
ed to the first eleven in response to frustration encountered when

Chapter 23 Reengineering systems engineering

356

scanning the classified ads, looking for the INCOSE-type of systems
engineering jobs.

Jenkins’ roles relate to conceiving and planning the solution system
while almost 30 years later, few of Sheard’s roles address the original sys-
tems engineering approach to conceiving and planning the solution system.
Sheard’s set of roles relate to interpersonal relationships between the prac-
titioners of disparate skills and disciplines implementing the solution system.
Furthermore, according to both Jenkins and Sheard the role of the systems
engineer (the activities performed by a person with the title systems engi-
neer) overlaps activities performed (the roles) by people from other profes-
sions129; the literature provides a wealth of examples of the different over-
laps between systems engineering and project management (DSMC, 1996;
Brekka, et al., 1994; Roe, 1995; Sheard, 1996; Johnson, 1997; Watts and
Mar, 1997; Bottomly, et al., 1998; Kasser, 1996; 2002d) and Figure 23-1.
Note the Defense Systems Management College definition of systems engi-
neering as “The management function which controls the total system devel-
opment effort for the purpose of achieving an optimum balance of all system
elements. It is a process which transforms an operational need into a de-
scription of system parameters and integrates those parameters to optimise
the overall system effectiveness” (DSMC, 1996). Notice the use of the term
“management function”! In addition, see Emes et al. for overlaps between
systems engineering and other disciplines (Emes, et al., 2005) and Hari et al.
for an example of the activities performed in new product design that over-
lap systems engineering (Hari, et al., 2004). In addition, the activities per-
formed by the systems engineer in one organisation are different to those
performed by a systems engineer in another organization and so are the
knowledge requirements for their activities. Consequently, defining a body
of knowledge for systems engineering poses a major challenge.

Defining a body of knowledge based on the role of a systems engineer
will be difficult if not impossible because the role of the systems engineer
has evolved over time so that it is different in practically every organisation.
As such, the solution to the problem of defining a body of knowledge for
systems engineering is to dissolve the problem by making a change in the
paradigm. This approach, which redesigns the system containing the prob-
lem or changes the perspective from which the problem is viewed to pro-
duce an innovative solution is one of the four ways to tackle a problem
(Ackoff, 1999) page 115). The paradigm change is made by making a distinc-
tion between a set of activities known as systems engineering and the role of
the systems engineer which is the sum of the systems engineering and non-
systems engineering activities systems engineers perform in the workplace.

129 A different set, as seen across the years.

Chapter 23 Reengineering systems engineering

357

The focus on activities is a return to Hall’s definition of “systems engineering
as a function130 not what a group does” (Hall, 1962) page 11) and means
that the knowledge needed by systems engineers in their roles will be more
than the activities to be defined as ‘systems engineering’ (see below), and
that knowledge can be separated into ‘systems engineering’ and ‘everything
else’. The ‘systems engineering’ knowledge will be placed in the SEBoK, and
the subset of knowledge of ‘everything else’ that will be needed will be out
of scope of the SEBoK but will be referenced appropriately.

23.2 Separating out the systems engineering knowledge
In the activity paradigm, various people in various disciplines at various
times perform a set of activities from the time a problem is being defined,
though the conceptualisation, design, construction and operation of the sys-
tem that solves, resolves or dissolves the problem to the time that the sys-
tem has been taken out of service and disposed. This set of activities may be
partitioned into subsets in various ways such as by professional discipline
(project/engineering management, systems engineering, engineering, new
product design, etc.) by time (the phases in the system lifecycle) or by the
three streams shown in Figure 2-2. Various systems engineers and non-
systems engineers perform different subsets of systems engineering activi-
ties and different subsets of non-systems engineering activities. The map-
ping of the role of the systems engineer to activities is different in different
organisations, hence the aforementioned difference in their descriptions
when systems engineers get together and discuss their roles131.

Looking at the structure of organisations from the temporal perspective,
in general the structure of organisations is still based on the work of F. W.
Taylor who systems engineered his mining organisation and split the work
into two streams of activities which have become known as ‘management’
and ‘labour’ (Taylor, 1911). However, since that time, the structure of com-
panies and the nature of work have changed. Organizational structures have
become flatter, decision making has become decentralized, information is
widely shared, workers form project teams, even across organizations, and
work arrangements are flexible (Microsoft, 2008b). Taylor’s split is no longer
applicable. Consequently, this Chapter proposes to reengineer (Hammer
and Champy, 1993) Taylor’s split for organisations developing systems by
splitting work into two different streams, systems engineering and non-
systems engineering and further partitioning the non-systems engineering
streams as described below.

130 A function is an activity.
131 Chapter 19.

Chapter 23 Reengineering systems engineering

358

The INCOSE Fellows definition of systems engineering was considered as
a starting point for determining what went into the systems engineering
stream. The definition is “Systems Engineering is an engineering discipline
whose responsibility is creating and executing an interdisciplinary process to
ensure that the customer and stakeholder's needs are satisfied in a high
quality, trustworthy, cost efficient and schedule compliant manner through-
out a system's entire lifecycle” (INCOSE Fellows, 2009). However, if the
words ‘engineering discipline’ are replaced by the words ‘project manage-
ment’ many project managers would consider the definition to apply to pro-
ject management. This definition may be understood as applying to both
the role of the systems engineer and the role of the project manager since
the roles overlap both in space and time as discussed above. As such, an
alternative definition is needed.

Further research to determine what went into the systems engineering
stream showed that the approved Standards used in systems engineering do
not seem to actually apply to systems engineering – they cover systems en-
gineering management and the processes for engineering a system! Thus:

Figure 23-1 JAXA Project management and systems engineering (JAXA,
2007)

 Mil-STD-499 covers systems engineering management (MIL-STD-499,
1969).

 Mil-STD-499A covers engineering management (MIL-STD-499A, 1974)
dropping the word ‘systems’ from the title.

 The draft (MIL-STD-499B, 1993) and MIL-STD-499C (Pennell and Knight,
2005) Standards contain the words “systems engineering” in their titles
but the Standards were never approved and these Standards also (as did

Chapter 23 Reengineering systems engineering

359

499 and 499A) generally ignore most of the problem identification,
whole solution conceptualisation and solution implementation planning
activities that take place in the early stages of systems engineering per-
formed in Phase A of Figure 23-1.

 ANSI/EIA-632 covers processes for engineering a system (ANSI/EIA-632,
1999).

 IEEE 1220 is for the application and management of the systems engi-
neering process (IEEE 1220, 1998).

 TISO/IEC 15288 lists processes performed by systems engineers (Arnold,
2002) and hence may be considered as being applicable to the role of
the systems engineer rather than to the activities known as systems en-
gineering.

The phases in providing a whole complete solution to a problem can be
considered as a set of activities performed by various people in various dis-
ciplines at various times. Some of those activities are systems engineering,
and some are not systems engineering. The next approach was to develop a
list of activities that could be described as systems engineering. Research
found several sources of lists of activities including:

 Eisner lists a general set of 28 tasks and activities that were normally
performed within the overall context of large-scale systems engineering
(Eisner, 1988). He calls the range of activities ‘specialty skills’ because
some people spend their careers working in these specialties. Thus ac-
cording to Eisner [the role of132] systems engineering overlaps at least
28 engineering specialties.

 Hyer provides a list of nine activities for systems integration but which
do not necessarily take place during the systems integration phase
(Hyer, 1997).

 Eisner expanded his earlier list (Eisner, 1988) and discusses 30 tasks that
form the central core of systems engineering (Eisner, 1997) page 156).
The whole area of systems engineering management is covered in just
one of the tasks. Eisner states that “not only must a Chief Systems Engi-
neer understand all 30 tasks; he or she must also understand the rela-
tionships between them, which is an enormously challenging undertak-
ing that requires both a broad and deep commitment to this discipline as
well as the supporting knowledge base”.

Should the research continue in this direction, the resulting list would be
long, subjective and open to never ending discussion. Looking outside the
box, lessons learned from psychology indicate that long lists are not the way
to proceed. At one point of time in the development of theories of motiva-

132 Author’s interpretation.

Chapter 23 Reengineering systems engineering

360

tion, Henry A. Murray identified separate kinds of behaviour and developed
an exhaustive list of psychogenic or social needs (Murray, 1938). However,
the list is so long that there is almost a separate need for each kind of behav-
iour that people demonstrate (Hall and Lindzey, 1957). While Murray’s list
of 39 kinds of behaviours has been very influential in the field of psychology,
it has not been applied directly to the study of motivation in organizations
because the length of the list makes it impractical to use. On the other
hand, Maslow's hierarchical classification of needs (Maslow, 1966; 1968;
1970) has been by far the most widely used classification system in the study
of motivation in organizations. Maslow differs from Murray in two im-
portant ways; his list is:

 Arranged in a hierarchy -commonly drawn as a pyramid, and contains a
set of hypotheses about the satisfaction of these needs.

 Short -- Only five categories.

The eventual approach chosen to determine what is and what is not a
systems engineering activity was to dissolve the problem by developing a
criterion for what constitutes an activity to be defined as systems engineer-
ing rather than trying to resolve the problem by a developing a list of activi-
ties. The following criterion was used to determine if an activity does or
does not belong in the set of activities to be known as systems engineering:

 If the activity deals with parts and their interactions as a whole, then it is
an activity within the set of activities to be known as systems engineer-
ing.

 If the activity deals with a part in isolation, then the activity is not an
activity within the set of activities to be known as systems engineering
but is part of ‘something else’, e.g., engineering management, software
engineering, etc.

The activities of systems engineering have focused on both analysis and
systems thinking. Analysis which has three steps (Ackoff, 1991) can be per-
formed as ‘reductionism’ or ‘decomposition’ – reducing the parts to ever
decreasing components in isolation, but should be performed by the systems
engineer as ‘elaboration’ (Hitchins, 2003) pages 93-95) – which examines the
parts in increasing detail without losing track of the part’s relationship to the
overall system. Systems thinking, on the other hand also has three steps
(Ackoff, 1991) but they are slightly different. Comparing analysis and sys-
tems thinking in the manner shown in Table 23-1, one can see that the focus
of analysis is to look inwards while the focus of systems thinking is to look
outwards. Both analysis (in the form of ‘elaboration’) and systems thinking
have their place in the activities performed in developing an understanding
of a system (Hitchins, 1992) page 14) and are but two of the systems think-
ing perspectives (Kasser and Mackley, 2008).

Chapter 23 Reengineering systems engineering

361

Table 23-1 Analysis and systems thinking

Analysis (Machine Age) Systems Thinking (Systems Age)

1. Take apart the thing to
be understood

1. A thing to be understood is con-
ceptualized as a part of one or
more larger wholes, not as a
whole to be taken apart;

2. Try to understand how
these parts worked

2. An understanding of the larger
system is sought;

3. Assemble an under-
standing of the parts in-
to an understanding of
the whole.

3. The system to be understood is
explained in terms of its role or
function in the containing sys-
tem.

Since the activities forming the ‘something else’s’ are part of the context
of systems engineering and are often performed by systems engineers, it is
recognised that systems engineers need the knowledge to perform or un-
derstand many of the activities defined as ‘something else’ but that
knowledge per sé is out of the scope of the SEBoK and will be identified ac-
cordingly. The ‘something else’ activities were further partitioned into the
following sets of non-systems engineering activities:

 Engineering.
 Management.
 Other.

The proposed activity paradigm definitions of the systems engineering
sets of activities and the non-systems engineering sets of activities are as
follows:

 Systems engineering is the set of activities involved with dealing with
parts and their interactions as a whole.

 Engineering is the set of activities dealing with a part in isolation. If the
part is not a technological product, for example if the part is such as a
human element, then use of language is such that the activity is not
called engineering but something else, such as training or exercising.

 Management is the set of activities known as planning organising, di-
recting, staffing and controlling activities for and in the production of
the part in isolation.

 Other is the remaining set of activities not included in the previous defi-
nitions.

Combining these definitions it can be seen that in the activity paradigm:

Chapter 23 Reengineering systems engineering

362

 Systems engineering management is the set of activities known as
planning organising, directing, staffing and controlling systems engineer-
ing activities in isolation from the other sets of management activities.

 Engineering management is the set of activities known as planning or-
ganising, directing, staffing and controlling engineering activities in isola-
tion from the other sets of management activities.

Lastly for the sake of completing the set of definitions, a task is an activi-
ty performed within a specific period of time and a project consists of a
temporary endeavour [set of tasks] undertaken to create a unique product,
service or result (PMI, 2004). It follows that:

 Project management is the set of activities known as planning organis-
ing, directing, staffing and controlling a temporary set of tasks under-
taken to create a unique product, service or result, in isolation from the
other projects.

The next phase in determining the SEBoK will be to identify the activities
performed in each phase of the system lifecycle developing a concept of
operations of the work being performed and then using the simple activity-
based criterion to determine which of the activities are and which are not
systems engineering. Each activity will be defined in such a manner as to
terminate with the production of a tangible product or products which is/are
transferred to the start of the subsequent activity (Chapter 4). The activities
have been grouped by the phases in the first and second systems engineer-
ing processes133 in the system lifecycle for a system that is developed from
conception to disposal134 using the HKMF shown in Figure 21-3. Each area of
the HKMF can potentially contain all sets of (systems engineering and non-
systems engineering) activities – some more than others. Figure 23-1 also
provides an indication of the relative ratios between the sets of activities
known as systems engineering and the sets of activities known as project
management over the SLC.

Use of the HKMF has also identified one reason for debates in the mean-
ing of terminology used by systems engineers. Words such as ‘capability’
and ‘system design’ have different meanings in different areas of the HKMF.
The confusion in the use of the term ‘operations concept’ and ‘concept of

133 The first systems engineering process deals with identifying the real problem and
a number of alternative conceptual solutions followed by the choice of an optimal
conceptual solution to the whole problem, The second systems engineering process
follows the first and deals with the creation, operation and disposal of an optimal
physical implementation of the conceptual solution to the problem generated by the
first systems engineering process.
134 Other lifecycles do exist.

Chapter 23 Reengineering systems engineering

363

operations’ can be similarly be clarified when one realizes that the terms
refer to products produced in different columns of the HKMF. In addition
the vocabulary for describing concepts in Layer 2 for single system develop-
ment in isolation is different to the vocabulary used in Layer 3 to express the
same concepts in business processing reengineering.

This approach to determining the contents of the SEBoK is also domain
independent but recognises that systems engineers do need domain
knowledge (as well as systems thinking, communications and interpersonal
skills). A serendipitous outcome of this approach which needs more re-
search, would truly reengineer the work of Taylor (Taylor, 1911). For exam-
ple,

 The potential exists to redraw role boundaries to align with the activity
boundaries and remove much of the role overlap and inefficiency in or-
ganisations.

 A systems engineering approach can be used to determine the systems
and non-systems engineering activities performed in any row and col-
umn of the HKMF based on the operations performed in that area of the
framework. The activities can be grouped in various ways into specific
roles (job positions) and the knowledge requirements for those roles
can be developed. These requirements would provide the knowledge
component requirement for the person or persons to be assigned to
perform the activities. The competency requirement for the person
would be determined separately.

23.3 The five types of systems engineers
The human side of systems engineering is the systems engineers who per-
form the roles known as systems engineering. These roles perform the con-
ceiving and creating the solution system systems engineering activities, the
project management activities, engineering and other speciality engineering
activities in various mixes depending on the phase in the system lifecycle and
the organisation in which the systems engineer works. Optimal performance
of each of the activities requires different characteristics in the systems en-
gineer. Previous attempts to identify characteristics of systems engineers
have been based on the traits attributable to systems engineers e.g. Hall,
Frank and the INCOSE UK Systems Engineering Competencies Framework
(Hall, 1962; Frank, 2006; Hudson, 2006) The list of desirable traits is increas-
ing steadily. However, the lessons learned from psychology discussed above
suggest lists are not the way to proceed and that an alternate approach be
found. Hence, instead of using lists of traits, an alternative approach135 of

135 Based on years of observations by the authors.

Chapter 23 Reengineering systems engineering

364

characterising systems engineers into the following five types is proposed
based on their ability to deal with problems and solutions.
 Type I. This type is an apprentice who has to be told “how” to imple-

ment the solution system.
 Type II. Type IIs are imitator/doers. This type is the most common type

of systems engineer. Type IIs have the ability to follow a process to im-
plement a physical solution system once told what to do.

 Type III. Type IIIs are problem solvers. Once given a statement of the
problem, this type has the expertise to conceptualize the solution sys-
tem and to plan the implementation of the solution, namely create the
process to realize the solution.

 Type IV. Type IVs are problem formulators. This type has the ability to
examine the situation and define the problem (Wymore, 1993) page 2),
but cannot conceptualise a solution.

 Type V. This type is rare and combines the abilities of the Types III and
IV, namely has the ability to examine the situation, define the problem,
conceptualise the solution system and plan and manage the implemen-
tation of the physical solution.

A person grows through the types with education and experience. It is
important to identify people with the potential to become Type Vs as early
as possible in their careers136 and then to provide them with fast track train-
ing to enable their organization to obtain the best use of their capabilities in
the future. Categorization by type is also situational because a Type V when
moving to a different domain can drop down to a lower level, and then, as
they learn more about the domain, rise back to Type V.

23.4 A benchmark of systems engineering postgraduate de-
gree syllabi

A benchmark of systems engineering postgraduate degree syllabi seems to
indicate that:
 Much of systems engineering is now taught as declarative and proce-

dural knowledge (Woolfolk, 1998) shown in Table 23-2 describing the
second systems engineering process. To be fair, this is not unique to
systems engineering (Microsoft, 2008b). And, as another example, Pe-
ter Drucker wrote “Throughout management science - in the literature
as well as in the work in progress--the emphasis is on techniques rather
than principles, on mechanics rather than decisions, on tools rather than
on results, and, above all, on efficiency of the part rather than on per-

136 These are the potential future leaders.

Chapter 23 Reengineering systems engineering

365

formance of the whole” (Drucker, 1973) page 509.) Today’s academic in-
stitutions seem to be producing Type II systems engineers and managers
(engineer leaders); but they should be producing or at least identifying
personnel with Type V characteristics by teaching conditional
knowledge.

 Some academic institutions teaching systems engineering are leaving
out the critical first systems engineering process of HKMF Column A.
For example, a proposed reference curriculum for systems engineering
(Jain and Verma, 2007) begins in Column B of the HKMF. This reference
curriculum complies with the content of Martin, Eisner, Wasson and
DOD 5000 (Martin, 1997) page 95), (Eisner, 1997) page 9), (Wasson,
2006) page 60) and (DOD 5000.2-R, 2002), pages 83-84) which consider
requirements as one input to the systems engineering process as men-
tioned above137. This failure to teach the critical first systems engineer-
ing process has resulted in (1) at least one generation of “systems engi-
neers” who are unfamiliar with the critical activities in Column A of the
HKMF and (2) the terms CONOPS and ‘operations concept’ being used
interchangeably by some systems engineers who do not have an appro-
priate frame of reference to understand the difference between the two
documents when old timers try to explain it to them.

Table 23-2 Types of knowledge (Woolfolk, 1998)

Declarative knowledge Knowledge that can be declared in some manner.
It is “knowing that” something is the case. De-
scribing a process is declarative knowledge.

Procedural knowledge Knowing how to do something. It must be
demonstrated; performing the process demon-
strates procedural knowledge.

Conditional knowledge Knowing when and why to apply the declarative
and procedural knowledge.

23.5 Hypothesis for a reason for the failure of systems engi-
neering

The new approach to characterizing systems engineers provides a hypothesis
for a reason for the failure of systems engineering in the early stages of large
projects (Hiremath, 2008) and other examples of poor systems engineering
implementation (GAO, 2006). For example, the cost and schedule overruns
in the JSF development project shown in Table 23-3 were predicted in Sec-

137 See Chapter 28.

Chapter 23 Reengineering systems engineering

366

tion 11.10 and hence probably preventable. Had Type V systems engineers
been working on the phases of the JSF project in column A of the HKMF, the
factors identified as potential causes of cost and schedule overruns leading
to the prediction in Section 11.10 would have probably been identified as
risks. Appropriate risk management techniques would then have been rec-
ommended and if these risk management techniques had been implement-
ed138, the ensuring cost and schedule overruns would have been reduced.

Table 23-3 Failure data from GAO report 06-368, 2006

Research seems to show that the early systems engineers of the 1950’s
and 1960’s tended to focus on identifying the problem (Wymore, 1993) and
finding an optimal solution (Hall, 1962; Goode and Machol, 1959). These
early systems engineers were of Type III, IV, and V, while the systems engi-
neers who came later tended to focus on processes (Type II)’s. Back in the
“good old days” of systems engineering Type III, IV and V systems engineers
solved/resolved/dissolved the problem in the first ‘systems engineering’
process addressing the conceptual solution, then initiated the implementa-
tion of the solution, and moved on to the next contract, leaving the Type II’s
to continue assisting the development of the solution system in the second
systems engineering process. There then came a time when there was a lack
of new projects and so many of the Type III, IV and V’s were laid off and lost
to the discipline. When the need for systems engineers picked up again, in
general only the Type II systems engineers were left and they took over sys-
tems engineering. They had seen a successful process for developing sys-
tems and so their focus was on the second systems engineering process.
They wrote the standards used in systems engineering (MIL-STD-499, 1969;
MIL-STD-499A, 1974; EIA 632, 1994; IEEE 1220, 1998) for other Type II sys-
tems engineers to follow. These Standards in turn became the foundation

138 A big “if” since political considerations in the Type II process paradigm would
probably have precluded the risk mitigation activities.

Chapter 23 Reengineering systems engineering

367

for educating systems engineers. The 499, 499A, 632, 1220, and 15288
Standards cover the systems engineering process and engineering manage-
ment because there is actually very little systems engineering (the activity
not the role) in the subsystem design, construction, and unit testing phases
(HKMF Columns C, D and E) of the systems lifecycle for a single system in
isolation. Activities pertaining to subsystems and units in isolation are engi-
neering of systems not systems engineering activities according to the crite-
rion defined above. The mantra became ‘follow the process and all will be
well’. The term GIGO - garbage in, garbage out, was acknowledged but ig-
nored. In this paradigm:

 While the process camp subset of the systems engineering profession
focuses on processes (Type II systems engineers), the literature on “ex-
cellence” focuses on people (Type V systems engineers) (Rodgers, et al.,
1993; Peters and Waterman, 1982; Peters and Austin, 1985).

 The focus is on process and not on providing an understanding of the
context and the ability to tailor the process as was called out in (MIL-
STD-499, 1969). This is seen in systems engineering courses where the
students are taught about the process but not about the context.

 Processes seen to work in one culture or organization have been copied
verbatim by other organizations, with dismal results. Examples can typi-
cally be found in the lessons learned (O’Toole, 2004) and some reasons
for a claimed Six Sigma initiative 60% failure rate (Angel and Froelich,
2008).

 The systems engineering process has a high degree of correlation to the
problem solving process because that was the process documented in
the Standards (Section 25.3).

 The Standards commonly used/taught in systems engineering (MIL-STD-
499, 1969; MIL-STD-499A, 1974) and (DOD 5000.2-R, 2002) pages 83-84)
ignore most of the activities allocated to Phase A in Figure 23-1 and
Phase A of the HKMF resulting in the critical first systems engineering
process addressing the conceptual solution being out of mainstream
Type II systems engineering. Table 23-4 contains data extracted from
Table 5 in (Honour and Valerdi, 2006) and rearranged in chronological
order139 showing the lack of coverage of the mission purpose/definition
activities in MIL-STD 499 and ANSI EIA 632. The top row in Table 23-4
has been added in this Chapter to show that MIL-STD 499 and ANSI EIA
632 do not cover the conceptual activities in early stage systems engi-
neering or the first systems engineering process and while the Systems

139 Based on the issue date of MIL-STD-499, not the draft MIL-STD-499C since the
contents of MIL-STD 499A and MIL-STD-499B don’t differ from MIL-STD 499C in this
respect.

Chapter 23 Reengineering systems engineering

368

Engineering CMM, the draft MIL-STD-499C Standard and ISO 15288 do
address the mission/purpose definition activities to some extent they al-
so do not cover the conceptual activities in the first systems engineering
process. This situation (addressing mission/purpose definition activities
to some extent while failing to cover the first systems engineering pro-
cess) also appeared in a survey of current systems engineering process-
es (Bruno and Mar, 1997) and in the list of the engineering and systems
engineering activities assigned to the systems engineering organiza-
tion/team based on the (MIL-STD-499B, 1993)/(EIA 632, 1994) Stand-
ards (Fisher, 1996).

Table 23-4 Focus of Standards – chronological order

Based on a combination of the five types of systems engineers and the
history of systems engineering paraphrased in terms of those five types, the
hypothesis is that a current cause of failures in systems engineering is the
assignment of Type II systems engineers or higher types trained in a Type II
process thinking paradigm to tasks that need the problem/solution charac-
teristics of the Type III, IV and V systems engineers. The associated predic-
tion to test the hypothesis is that the cost and schedule overruns and other
failures will continue in spite of all the funding being allocated to systems
engineering education if the education of engineer leaders remains in the
Type II paradigm and starts with the activities in column B of the HKMF.
Type II systems engineers are and should be doing the engineering of sys-
tems (following the process designed by the Type V systems engineers).
Type V systems engineers should be doing systems engineering in Columns
A, B, F and G of the HKMF.

23.6 Recommendations
The following recommendations are made to improve systems engineering
based on the research so far:

Chapter 23 Reengineering systems engineering

369

Figure 23-2 Mapping Types into SDLC

1. Continue with the development of the SEBoK creating a concept of
operations for the product producing activities in each rectangle of
the HKMF using the simple activity-based criterion to determine
which of the activities are and which are not systems engineering
and then defining the knowledge requirements for the activities
known as systems engineering.

2. Investigate the potential of redrawing role boundaries to align with
the activity boundaries and remove much of the role overlap and
inefficiency in organisations. This approach, which needs more re-
search, would truly reengineer the work of F. W. Taylor (Taylor,
1911).

3. Once the activities performed by systems engineers in each area of
the HKMF have been identified, an appropriate level of competence
for the activity should be made and optimal systems engineering
teams could then be designed.

4. Work with psychologists to identify characteristics of the five types
of engineer leaders so that the Type V’s may be identified early in
their career and put through fast track training to increase their
value to their organizations.

5. Modify the curriculum for teaching systems engineering to include
activities enabling the early identification of potential Type V’s.

6. Modify the curriculum for teaching systems engineering to include
the system engineering activities performed in Column A of the
HKMF.

7. Develop a good set of educational materials for use with the modi-
fied curriculum.

8. Identify the activities performed in the non-systems engineering
streams in each column of the HKMF. Then determine the

Chapter 23 Reengineering systems engineering

370

knowledge and type of engineer leader needed to make optimal
decisions and quantify the risks associated with decision making
with specific levels of imperfect knowledge and using the wrong
type of engineer leader. This model should inform customers con-
cerning the prediction of the probability of future project failure at
any point in any column of the HKMF by comparing the situation in
a real project with the data in the model.

23.7 Summary
This Chapter documented the early phases of using systems engineering to
develop a SEBoK and some of the findings. The first part of the Chapter dis-
cussed the nature of the problem and dissolved the problem by applying an
out-of-the-box approach. The second part of the Chapter identified five
types of systems engineers, discussed the evolution of systems engineering
in terms of those five types, hypothesised that a major cause of the failure of
systems engineering is the allocation of inappropriate types of systems engi-
neers to systems engineering activities and identified a critical gap in sys-
tems engineering education. The Chapter concluded with some insights
from the out-of-the-box approach and recommendations for further study.

23.8 Conclusion
The out-of the-box approach to developing the SEBoK seems to be achieva-
ble and has produced some interesting insights.

Chapter 24 Competency models

371

24A	framework	for	benchmarking	
competency	assessment	models

This Chapter continues from where section 7.2 ended and discusses the
need for competent systems engineers, the differences between nine cur-
rent ways of assessing competencies (competency models) and the difficulty
of comparing the competency models due to the different ways each model
groups the competencies. The Chapter then introduces a competency mod-
el maturity framework (CMMF) for benchmarking competency models of
systems engineers. The Chapter benchmarks the nine models using the
CMMF and a surprising finding was an error of omission in all nine models.
The Chapter shows that the CMMF can also be used as the basis for develop-
ing an original model for a specific organisation in a specific time and place
and concludes with suggestions for future research.

24.1 Introduction
Current approaches for constructing and using competency models are
based on observations of what systems engineers do in organisations but
there is no way to directly compare competency models or verify if indeed
they are fit for purpose. The purpose of this Chapter is to introduce a CMMF
for comparing or benchmarking competency models of systems engineers.
The literature review for the research documented in this Chapter covers
both systems engineering and the domain of cognitive psychology. The
Chapter begins with a discussion on the need for competent systems engi-
neers, then discusses the role of systems engineers in the workplace provid-
ing examples of a number of points of view as to what those roles are and
alludes to the difficulty of gaining a generic consensus on the nature of the
role of the systems engineer. At that point the focus of the Chapter changes
to ways of assessing the competencies of systems engineers. The Chapter
continues with a brief examination of nine different competency models and
shows that each competency model seems to have been designed for a dif-
ferent purpose in different domains, times and places. Since competency
and competency models are widely discussed in the domain of cognitive
psychology, the authors have found it both necessary and helpful to adopt

2013

Chapter 24 Competency models

372

language from the domain of cognitive psychology, avoiding the need to
invent yet more systems engineering terminology for concepts already well-
defined in the domain of cognitive psychology. Table 24-1 contains a glossa-
ry to assist in the comprehension of the Chapter.

The Chapter then introduces a two-dimensional CMMF that can be used
for comparing and enhancing existing competency models and as a compe-
tency model by those organisations that do not yet have a competency
model and wish to develop one. The CMMF is based on assessing the com-
petency needed to perform systems engineering in five monotonically as-
cending levels. The Chapter then benchmarks the nine competency models
studied using the CMMF, identifies an error of omission common to all mod-
els, and continues with suggestions for future research.

Table 24-1 Glossary

Word Meaning Source

Ability The required competence to perform the
function successfully.

Analytical
thinking

The abstract separation of a whole into its
constituent parts in order to study the parts
and their relations

TheFreediction-
ary.com

Behaviour The way in which an animal or a person acts
in response to a particular situation stimulus

Oxford Ameri-
can Dictionary

Capability Having the ability required for a specific task
or accomplishment

TheFreediction-
ary.com

Cognitive of, relating to, being, or involving conscious
intellectual activity (as thinking, reasoning,
or remembering)

Merriam-
Webster, 2011

Competen-
cies

Behaviours that encompass the knowledge,
skills, and attributes required for successful
performance

(LaRocca, 1999)

Competency
model

A descriptive tool that identifies the compe-
tencies needed to operate in a specific role
within a(n) job, occupation, organization, or
industry.

(Ennis, 2008)

A collection of competencies that together
define successful performance in a particular
work setting.

(ETA, 2010)

Competent having requisite or adequate ability or quali-
ties

Merriam-
Webster, 2011

Chapter 24 Competency models

373

Conditional
knowledge

Knowing when and why to apply the declar-
ative and procedural knowledge.

(Woolfolk,
1998)

Critical think-
ing

Judicious reasoning about what to believe
and therefore what to do

(Tittle, 2011)

Declarative
knowledge

Knowledge that can be declared in some
manner. It is “knowing that” something is
the case. Describing a process is declarative
knowledge.

(Woolfolk,
1998)

Holistic think-
ing

Art and science of handling interdependent
sets of variables

(Gharajedaghi,
1999)

Thinking about a system as a whole but also
doing the thinking in a systemic and system-
atic manner.

(Kasser, 2013)
Chapter 6

Knowledge A body of information needed for the suc-
cessful performance of the process, or set of
processes, considered relevant to the disci-
pline of interest.

Procedural
knowledge

Knowing how to do something. It must be
demonstrated; performing a process
demonstrates procedural knowledge.

(Woolfolk,
1998)

Proficiency Levels of capability (Metzger and
Bender, 2007)

Skill The observable or measured competence in
performing the function.

Systems
thinking

Systems thinking seeks to address and solve
complex problems by understanding the
system parts and their interactions within
the context of the whole system, rather than
in isolation. C.f. Systems Approach

Hitchins, 2011

Trait a distinguishing quality (as of personal char-
acter)

Merriam-
Webster, 2011

24.2 The need for competent systems engineers
Inadequate systems engineering is repeatedly cited as a major contributor to
failed projects particularly in NASA and the US DOD (Evans, 1989; Leveson,
2004; Welby, 2010; Wynne and Schaeffer, 2005). A literature review reveals
that many of the works on improving systems engineering have focused on
improving and developing new systems engineering processes, and tend to
ignore people (Swarz and DeRosa, 2006; Goldberg and Assaraf, 2010). To be
fair, this is not unique to systems engineering (Microsoft, 2008a). For exam-

Chapter 24 Competency models

374

ple, Peter Drucker wrote “Throughout management science--in the literature
as well as in the work in progress--the emphasis is on techniques rather than
principles, on mechanics rather than decisions, on tools rather than on re-
sults, and, above all, on efficiency of the part rather than on performance of
the whole" (Drucker, 1973) page 509.

However, the literature on “excellence” focuses on people and ignores
process (Peters and Waterman, 1982; Peters and Austin, 1985; Rodgers, et
al., 1993). In addition, Robert A. Frosch, when an assistant secretary to the
US Navy, wrote, “systems, even very large systems, are not developed by the
tools of systems engineering, but only by the engineers using the tools”
(Frosch, 1969). And out of the software realm comes the phrase attributed
to Grady Booch “a fool with a tool is still a fool”.

While the focus on improving process continues (Goldberg and Assaraf,
2010; West, 2010), the need to certify the competencies of systems engi-
neers is now becoming widely recognised. For example, systems engineer-
ing competency models are becoming more widely developed and used in
support of systems engineering workforce selection, development, educa-
tion and training (Burke, et al., 2000; Jansma and Jones, 2006; Verma, et al.,
2008; Menrad and Larson, 2008; Squires, et al., 2011). In addition there is a
growing international interest in a certified systems engineering professional
(CSEP) qualification140.

24.3 Roles and activities of systems engineers
Research into developing the requirements for, and subsequently updating,
a 21st century introductory immersion course on systems engineering
(Kasser, et al., 2008), included a literature review of text books published
between 1959 and 2009 starting with Goode and Machol (Goode and
Machol, 1959) as well as the proceedings of the international symposia of
the INCOSE since 1991. Findings from this research determined that:
 The role of the systems engineer in the workplace depends on the situa-

tion.
 Definitions and descriptions of systems engineering currently comprise

different interpretations of the broad raft of activities that systems en-
gineers might undertake according to their role in the workplace.

This multichotomy exists because different users of the term ‘systems
engineering’ for almost 60 years have chosen or perceived different mean-
ings. For example, one comment from 1960 was “Despite the difficulties of

140 There are independent national qualifications in Korea and Singapore.

Chapter 24 Competency models

375

finding a universally accepted definition of systems engineering141, it is fair to
say that the systems engineer is the man who is generally responsible for the
over-all planning, design, testing, and production of today’s automatic and
semi-automatic systems” (Chapanis, 1960) page 357). Jenkins expanded that
comment into 12 roles of a systems engineer (Section 23.1) and seven of
those roles (activities performed by a person with the title systems engineer)
overlapped the role of the project manager (activities performed by a person
with the title project manager) (Jenkins, 1969) page 164).

Some of the evolution of the role of the systems engineer can be seen in
the very little overlap between the 12 roles documented by Jenkins and
Sheard’s 12 systems engineering roles (Section 23.1). Jenkins’ roles relate to
the activities in conceiving and planning the solution system while almost 30
years later, Sheard’s set of roles relate to interpersonal relationships be-
tween the practitioners of disparate skills and disciplines implementing the
solution system.

Furthermore, the role of the systems engineer (the activities performed
by a person with the title systems engineer) overlaps the roles of people
from other professions according to both Jenkins and Sheard. The research
found several other sources of lists of activities performed by systems engi-
neers including:

 A few examples of the different overlaps between systems engineering
and project management (DSMC, 1996; Brekka, et al., 1994; Roe, 1995;
Sheard, 1996; Johnson, 1997; Watts and Mar, 1997; Bottomly, et al.,
1998; Kasser, 1996)142. In addition, the Defense Systems Management
College definition of systems engineering is “The management function
which controls the total system development effort for the purpose of
achieving an optimum balance of all system elements. It is a process
which transforms an operational need into a description of system pa-
rameters and integrates those parameters to optimise the overall sys-
tem effectiveness” (DSMC, 1996). Notice the use of the term “manage-
ment function”.

 A discussion on the overlaps between systems engineering and other
disciplines (Emes, et al., 2005).

 An example of the activities performed in new product design that over-
laps those of systems engineering (Hari, et al., 2004).

 A general set of 28 tasks and activities that were normally performed
within the overall context of large-scale systems engineering (Eisner,
1988). Eisner called the range of activities ‘specialty skills’ because
some people spend their careers working in these specialties. Thus ac-

141 Fifty years later, nothing has changed in that respect.
142 A different set of overlaps, as seen across the years.

Chapter 24 Competency models

376

cording to Eisner [the role of]143 the systems engineer overlaps at least
28 engineering specialties.

 30 tasks that form the central core of systems engineering (Eisner, 1997)
page 156. The whole area of systems engineering management is cov-
ered in just one of the tasks. Eisner states that “not only must a Chief
Systems Engineer understand all 30 tasks; he or she must also under-
stand the relationships between them, which is an enormously challeng-
ing undertaking that requires both a broad and deep commitment to this
discipline as well as the supporting knowledge base”.

24.4 Assessing systems engineering competency
Competency assessment tends to be performed using competency models
which form the foundation for developing curriculum and selecting training
materials, and for licensure and certification requirements, job descriptions,
recruiting and hiring, and performance reviews (CareerOneStop, 2011).
“These models have competency domains broken down into competency
groups and further sub-categorized into sub-competencies. As one continues
to the next144 levels in the hierarchy, the competencies become further fo-
cused and specific to the industry, job or occupation, and position” (Ennis,
2008). A multi-level assessment approach to assessing proficiencies of sys-
tems engineers groups the knowledge, traits, abilities and other characteris-
tics of successful systems engineers into a two-dimensional maturity mod-
el145 in accordance with Arnold who wrote “at its simplest, competence may
be viewed in terms of two dimensions or axes. One axis defines the process,
or set of processes, considered relevant to the discipline of interest. The oth-
er axis establishes the level of proficiency attained typically using a progres-
sion of increasing-value cardinal points that are defined in terms of attain-
ment or performance criteria” (Arnold, 2000) as shown in Figure 24-1.

The activities performed by a systems engineer in one organisation are
different to those performed by a systems engineer in another organization
and sometimes even in different parts of the same organisation (Section
19.7). It could thus be expected that different ways of assessing the compe-
tency of systems engineers would assess different characteristics. The fol-
lowing four competency models were studied to determine their coverage.

143 Author’s interpretation.
144 Next level down, or lower levels.
145 Due to space limitations, where prior work covers a topic in detail, the work is
cited and summarized.

Chapter 24 Competency models

377

Figure 24-1 Two dimensional assessments

1. Knowledge, Skills, and Abilities (KSA).
2. INCOSE Certified Systems Engineer Professional (CSEP) Examination

(INCOSE, 2008).
3. INCOSE UK Systems Engineering Competencies Framework (SECF)

(INCOSE UK, 2010).
4. Capacity for Engineering Systems Thinking (CEST) (Frank, 2006).

The findings showed that each of the competency models had different
goals and objectives (Kasser, et al., 2010). Sometime later in the research,
the following competency models were also studied with similar findings.

5. A systems engineering competency taxonomy (SECT) (Squires, et al.,
2011).

6. NASA 2010 Systems Engineering Competencies (NASA, 2010).
7. The JPL Systems Engineering Advancement (SEA) project (Jansma

and Jones, 2006).
8. MITRE 2007 Systems Engineering Competency Model (Metzger and

Bender, 2007).
9. National Defense Industrial Association (NDIA) proposed systems

engineering competency model (Gelosh, 2008).

Consider each of these competency models. Descriptions of each com-
petency model are brief and where details of the content are given, the in-
tent of each summary is to enable the differences between the competency
models to be seen, not to highlight the contents of the competency model.

24.4.1 Knowledge, Skills, and Abilities

Knowledge, Skills, and Abilities (KSA) are one way of assessing the suitability
of candidates for job positions according to qualification standards published
by the US Office of Personnel Management (OPM). These standards are
intended to identify applicants who are likely to perform successfully on the
job, and to screen out those who are unlikely to do so (OPM, 2009). In prac-
tice, KSAs tend to be lists of statements written by, or on behalf of, candi-
dates. These statements are targeted to specific positions and describe a

Chapter 24 Competency models

378

number of situational challenges faced by the candidate and outcomes
achieved in previous jobs that are to be used by evaluators in a pass-fail
mode when looking for qualified candidates for the specific position.

KSAs are an improvement over resumes written as job descriptions cit-
ing years of experience that state nothing about the achievements of the
person. Moreover, being descriptive, KSAs do not seem to be generally suit-
able for assessing the difference between a person who does not under-
stand the underlying fundamentals and just follows a process to reach a suc-
cessful conclusion and a person who understands what needs to be done
and can create and implement a process to do it successfully. Lastly, while
KSAs can provide a multi-level assessment of the proficiency of a systems
engineer, there is no standard definition for any such levels.

24.4.2 INCOSE CSEP Exam

The INCOSE Certified Systems Engineering Professional (CSEP) examination
(INCOSE, 2008) is only a part of the three-tier INCOSE approach to certifying
the competency of a systems engineer and should not be considered as a
stand-alone certification of competency. The INCOSE CSEP examination is
designed to test the applicant’s knowledge of the contents of the INCOSE
Systems Engineering Handbook (Haskins, 2011; 2006a). Consequently, the
handbook focuses on processes according to ISO/IEC 15288, only addresses
a limited body of declarative and procedural knowledge and does not ad-
dress the cognitive skills and the individual traits in an objective manner.
These skills and traits are addressed in a subjective manner in the follow up
evaluation of the career experience of the candidate. The CSEP examination
may be considered as a minimal measurement of systems engineering com-
petency.

24.4.3 INCOSE UK Systems Engineering Competencies Framework

The Systems Engineering Competency Framework (SECF) (INCOSE UK, 2010)
was initially developed in response to an issue identified by the INCOSE UK
Advisory Board (UKAB) (Hudson, 2006). The objective determined by the
INCOSE UKAB was “to have a measurable set of competencies for systems
engineering which will achieve national recognition and will be useful to the
enterprises represented by the UKAB”. The focus of the SECF is on the com-
petencies of systems engineering rather than the competencies of a systems
engineer.

The SECF competencies are grouped into three themes; Systems Think-
ing, Holistic Lifecycle View, and Systems Engineering Management.

1. Systems Thinking contains the underpinning systems concepts and
the system/super-system skills including the enterprise and tech-
nology environment.

Chapter 24 Competency models

379

2. Holistic Lifecycle View contains all the skills associated the systems
lifecycle from need identification, requirements through to opera-
tion and ultimately disposal.

3. Systems Engineering Management deals with the skills of choosing
the appropriate lifecycle and the planning, monitoring and control
of the systems engineering process.

According to the SECF, each competency should be assessed in terms of
four levels of comprehension and experience defined by “Awareness”
through to “Expert”.

1. Awareness: The person is able to understand the key issues and
their implications. They are able to ask relevant and constructive
questions on the subject. This level is aimed at enterprise roles that
interface with Systems Engineering and therefore require an under-
standing of the Systems Engineering role within the enterprise.

2. Supervised Practitioner: The person displays an understanding of
the subject but requires guidance and supervision. This proficiency
level defines those engineers who are “in-training” or are inexperi-
enced in that particular competency.

3. Practitioner: The person displays detailed knowledge of the subject
and is capable of providing guidance and advice to others.

4. Expert: The person displays extensive and substantial practical ex-
perience and applied knowledge of the subject.

While the SECF is a worthwhile effort, there seem to be a number of in-
consistencies in the document including:

 The four levels of proficiency are not in the same dimension: while the
last three levels are attributable to increasing levels of proficiency of
systems engineers, the ‘awareness’ level is applicable to people who
work with systems engineers at high levels in an organization and as
such there is an assumption that these people should have some
knowledge of systems engineering.

 The allocation of knowledge to the systems thinking competency theme
does not match the way the term cognitive skills is used in the systems
thinking and critical thinking professions (domains). This is a potential
cause of confusion.

 While lists of abilities within the competencies make it easy to assess
compliance by checking off experience against the items on the list, the
method has the same intrinsic defect as the use of KSAs. Namely, it
does not seem to be generally suitable for assessing the difference be-
tween a person who does not understand the underlying fundamentals
and just follows a process to reach a successful conclusion and a person
who understands what needs to be done and can create and implement
a process to do it successfully.

Chapter 24 Competency models

380

The SECF does however provide a way of setting the systems engineer-
ing role proficiency requirements for jobs in a process-oriented work envi-
ronment, namely meets the one of the purposes for competency models
produced by human resource professionals. Nevertheless, it should be used
with care for assessing the competencies of individuals due to:

 its lack of an objective way of assessing cognitive skills and individual
traits;

 its being based on the observed role of a systems engineer in a number
of UK organisations; namely the knowledge that systems engineers in
the UK have, rather than the knowledge systems engineers need to
have.

24.4.4 Capacity for Engineering Systems Thinking (CEST)

The capacity for engineering system thinking (CEST) is a proposed set of high
order thinking skills that enable individuals to successfully perform systems
engineering tasks (Frank, 2006). A study aimed at identifying the character-
istics of successful systems engineers identified 83, which were aggregated
into four sets of characteristics as follows:

1. cognitive characteristics related to systems thinking,
2. systems engineering skills,
3. individual traits,
4. multidisciplinary knowledge and experience.

CEST focuses on the cognitive skills, individual traits, capabilities and
knowledge and background characteristics of a systems engineer who can
examine system failures and identify and remedy system problems (Frank
and Waks, 2001). As such, it may be useful for assessing these aspects of the
competency of systems engineers. However, at this time, CEST is still in its
research stages.

24.4.5 A systems engineering competency taxonomy (SECT)

Squires, Wade, Dominick and Gelosh have built a systems engineering com-
petency taxonomy (SECT) from a selected set of existing competency models
combined with some systems thinking (Squires, et al., 2011).

The authors combined the following three models into single Experi-
ence Accelerator (ExpAcc) competency taxonomy:

1. The Systems Planning, Research, Development, and Engineering
(SPRDE) Systems Engineering and Program Systems Engineer (PSE)
competency model, known as the SPRDE-E/PSE (DAU, 2010);

2. The Systems Engineering Research Center (SERC) Technical Lead
Competency Model (Gavito, et al., 2010);

Chapter 24 Competency models

381

3. A Critical/Systems Thinking Competency Model (Squires, 2007).

The final SECT competency taxonomy which covers 87 unique compe-
tencies is based on the following three-pronged approach:

 Systems and critical thinking is the backbone of the model.
 Technical expertise which comprises technical leadership, technical

management, and technical/analytical skills.
 Project management and other broad-based professional competencies.

Unlike the other competency models studied, SECT evaluates the ability
to deal with complexity in several levels of proficiency.

24.4.6 NASA 2010 Systems Engineering Competencies

NASA identified 49 systems engineering competencies which are grouped by
competency areas, competencies and competency elements and assessed in
four proficiency levels (NASA, 2010).
 The ten competency areas are concepts and architecture, system de-

sign, production and operations, technical management, project man-
agement, internal and external environments, human capital manage-
ment, security and safety, professional and leadership development.

 The 35 systems engineering element competencies express the overall
knowledge, skills and behaviours that systems engineers are expected
to possess and/or perform as a part of their job.

 The four proficiency levels are technical engineer/project team member,
subsystem lead, project systems engineer and program systems engi-
neer.

The model is tailored to NASA’s needs. It does not include any overt
reference to systems thinking, cognitive competencies and behavioural
traits.

24.4.7 The JPL Systems Engineering Advancement (SEA) project

Jansma and Jones developed a systems engineering competency model
along three axes; processes, personal behaviours and technical knowledge as
part of a project to improve systems engineering at the Jet Propulsion La-
boratory (JPL) (Jansma and Jones, 2006). The SEA Project utilized a rigorous
process to identify a list of highly valued personal behaviours of systems en-
gineers.
 The processes axis encompasses ten systems engineering functions.
 The personal behaviours fall into five clusters –

1. leadership skills,
2. attitudes and attributes,
3. communication,

Chapter 24 Competency models

382

4. problem solving and systems thinking, and
5. technical acumen.

 The technical knowledge axis encompasses 21 systems engineering dis-
ciplines and fields.

24.4.8 MITRE 2007 Systems Engineering Competency Model

The MITRE Systems Engineering competency model (Metzger and Bender,
2007) is based on criteria for successful MITRE systems engineers. The
MITRE model has three cumulative levels of proficiency (i.e., levels of profi-
ciency) and consists of 36 competencies organized into five sections:

1. Enterprise Perspectives.
2. Systems Engineering Lifecycle.
3. Systems Engineering Planning and Management.
4. Systems Engineering Technical Specialties.
5. Collaboration and Individual Characteristics.

The authors of this model do not claim that their model is a general
competency model. They explicitly state that the model is tailored to the
MITRE needs. The model was not “scientifically” validated. The authors
generally claim that “the original draft competencies were based upon in-
formation from standards bodies, the MITRE Institute, commercial compa-
nies, and Government sources … The model went through numerous revisions
with input from many people across MITRE before it reached this form. It will
continue to evolve and be upgraded …”

The MITRE systems engineering competency model has three increasing
levels of proficiency, Foundational, Intermediate, and Expert. MITRE as-
sumes that a person’s competence at a specific proficiency level is generally
the result of education, work experience, job tasks, and specific job roles. A
MITRE systems engineer is likely to be expert in some competencies, inter-
mediate in others, and foundational in others. It is not expected, and it
would be highly unlikely, that any one person would be expert in all the be-
haviours and competencies in this model.

24.4.9 National Defense Industrial Association (NDIA) proposed sys-
tems engineering competency model

The National Defense Industrial Association (NDIA) proposed systems engi-
neering competency model groups 50 competencies in the following four
areas (Gelosh, 2008):

1. Analytical containing 20 competencies covering systems engineer-
ing tools and techniques design considerations.

Chapter 24 Competency models

383

Ta
bl

e
24

-2
Ar

ra
ng

em
en

t o
f c

om
pe

te
nc

ie
s i

n
th

e
ni

ne
 c

om
pe

te
nc

y
m

od
el

s

KS
As

IN
CO

SE
 C

SE
P

Ex
am

SE
CF

CE
ST

SE
CT

N
AS

A
20

10
JP

L
SE

A
M

IT
RE

N
DI

A

N
/A

Sy
st

em
s

En
gi

ne
er

-
in

g
O

ve
rv

ie
w

Sy
st

em
s

Th
in

ki
ng

Co
gn

iti
ve

Ch
ar

ac
te

r-
ist

ic
s

Sy
st

em
s

an
d

Cr
iti

ca
l

Th
in

ki
ng

Co
nc

ep
ts

an
d

Ar
ch

i-
te

ct
ur

e

Pr
oc

es
se

s
En

te
rp

ris
e

Pe
rs

pe
c-

tiv
es

An
al

yt
i-

ca
l

Ge
ne

ra
l

Li
fe

cy
cl

e
St

ag
es

Ho
lis

tic
Li

fe
cy

cl
e

Vi
ew

Sy
st

em
s

En
gi

ne
er

-
in

g
Sk

ill
s

Te
ch

ni
ca

l
Ex

pe
rt

ise
Sy

st
em

De

-
sig

n
Pe

rs
on

al
Be

ha
vi

or
s

Sy
st

em
s

En
gi

ne
er

-
in

g
Li

fe
cy

-
cl

e

Te
ch

ni
ca

l
M

an
-

ag
em

en
t

Te
ch

ni
ca

l
Pr

oc
es

s-
es

Sy
st

em
s

En
gi

ne
er

in
g

M
an

ag
e-

m
en

t

In
di

vi
du

al
Tr

ai
ts

Pr
oj

ec
t

M
an

ag
e-

m
en

t

Pr
od

uc
tio

n
an

d
O

pe
ra

-
tio

ns

Te
ch

ni
ca

l
Kn

ow
le

dg
e

Sy
st

em
s

En
gi

ne
er

-
in

g
Pl

an
-

ni
ng

an

d
M

an
ag

e-
m

en
t

Ge
ne

ra
l

Pr
oj

ec
t P

ro
ce

ss
es

M
ul

tid
isc

i-
pl

in
ar

y
Kn

ow
le

dg
e

Te
ch

ni
ca

l
M

an
ag

e-
m

en
t

Sy
st

em
s

En
gi

ne
er

-
in

g
Te

ch
-

ni
ca

l
Sp

e-
ci

al
tie

s

Pr
of

es
-

sio
na

l
Co

m
pe

-
te

nc
ie

s

Chapter 24 Competency models

384

1. Technical management containing 15 competencies in the tech-
nical management process.

2. General containing five competencies pertaining to a total systems
view.

3. Professional competencies containing 10 competencies covering
thinking, problem solving and inter-personal skills.

The planned approach, according to the presentation, was to develop
the competencies based on the roles of systems engineers. Two years later,
the model was still a work in progress (NDIA E&T, 2010), for example, the
first of the proposed 2011 tasks was to survey existing, freely available sys-
tems engineering competency models for entry-level systems engineers to
develop the minimum requirements for an individual to be called a systems
engineer. Reasons for this lack of progress may include:

 The difficulty of defining a role-based SEBoK due to the broad range of
non-systems engineering activities performed by systems engineers in
their role in the workplace that require knowledge from other disci-
plines (Chapter 12, and 23).

 The different opinions on the nature of systems engineering146 that pre-
clude obtaining consensus with respect to a SEBoK for systems engi-
neering.

And without consensus on a SEBoK, the committee cannot produce
even a minimal objective traceable set of generic requirements for the com-
petency of a systems engineer.

24.5 Comparing the different competency models
As expected, each of the competency models described above was de-

veloped to provide a solution to a different problem and contains different
bodies of knowledge. This is in accordance with general industry practice for
the design and use of competency models (Ennis, 2008). However, none of
the competency models discussed above was presented in a format compat-
ible with the nine-tier US Employment and Training Administration (ETA)
Competency Model Clearinghouse’s General Competency Model Framework
(ETA, 2010). Each of these competency models identified a large number of
competencies and then grouped the competencies into smaller manageable
but different groups that while meeting the need of the time and place,
make comparing the assessment approaches difficult as shown in the sum-
mary in Table 24-2.

146 See discussion on the camps in Chapter 27.

Chapter 24 Competency models

385

At the detailed level, NDIA aggregates ‘requirements management’ into
‘technical competencies’ (Gelosh, 2008) while MITRE groups the same func-
tion into ‘systems engineering lifecycle’ (Metzger and Bender, 2007). SECT
allocates ‘requirements analysis’ to ‘Technical/Analytical Competencies’
(Squires, et al., 2011) while MITRE incorporates the function into ‘require-
ments engineering’ which is allocated to ‘systems lifecycle’. Thus, a common
framework that could encompass all the assessment approaches is needed
to compare the different competency models. This framework would allow
owners and users of each of the competency models to benchmark their
competency model against the others, perhaps identify gaps, and upgrade
their approach.

Some of the competencies being assessed fall into the category of cog-
nitive characteristics. The traditional academic approach to measuring cog-
nitive characteristics is based on the revised Bloom’s taxonomy which com-
bines systems thinking and critical thinking (Anderson, et al., 2000). Re-
search into the psychology domain identified an alternative approach which
unlike Bloom’s taxonomy, allows for the systems thinking and critical think-
ing skills to be assessed separately147 (Kasser, 2010).

The levels of ability in each in each of the nine competency models stud-
ied are also different, some models only recognise one level, some models
assess skill proficiencies and some assess necessary proficiencies for job po-
sitions (roles) at specific levels in the organisational hierarchy as shown in
Table 24-3. Note that the SECT evaluates proficiency in dealing with complex-
ity; a different scale with respect to the evaluation of proficiency in the other
competency models.

147 See section 24.6.1.2.

Chapter 24 Competency models

386

Ta
bl

e
24

-3
Co

m
pa

ris
on

 o
f p

ro
fic

ie
nc

y
le

ve
ls

 in
 th

e
co

m
pe

te
nc

y
m

od
el

s

KS
As

IN
CO

SE
CS

EP
 E

xa
m

SE
CF

CE
ST

SE
CT

N
AS

A
20

10
JP

L
SE

A
M

IT
RE

N
DI

A

N
/A

N
/A

Aw
ar

en
es

s
N

/A
N

on
e

or
Aw

ar
e

O
nl

y
Te

ch
ni

ca
l

En
gi

-
ne

er
/P

ro
je

ct
Te

am
 M

em
be

r

N
/A

Fo
un

da
tio

na
l

N
/A

Su
pe

rv
ise

d
Pr

ac
tit

io
ne

r
Ap

pl
y

w
ith

Gu
id

an
ce

Su
bs

ys
te

m
 L

ea
d

In
te

rm
ed

ia
te

Pr
ac

tit
io

ne
r

Ap
pl

y
Pr

oj
ec

t
Sy

st
em

s
en

gi
ne

er
Ex

pe
rt

Ex
pe

rt
M

an
ag

e
or

Le
ad

Pr
og

ra
m

sy
st

em
s

en
gi

ne
er

Ad
va

nc
e

St
at

e
of

 A
rt

Chapter 24 Competency models

387

KS
As

IN
CO

SE
 C

SE
P

Ex
am

SE
CF

CE
ST

SE
CT

N
AS

A
20

10
JP

L
SE

A
M

IT
RE

N
DI

A

Ag
re

em
en

t
Pr

o-
ce

ss
es

Pr
oj

ec
t

M
an

-
ag

em
en

t
Co

lla
bo

ra
-

tio
n

an
d

In
di

vi
du

al
Ch

ar
ac

te
r-

ist
ic

s

O
rg

an
iza

tio
na

l
Pr

oj
ec

t
En

ab
lin

g
Pr

oc
es

se
s

In
te

rn
al

an

d
Ex

te
rn

al

En
vi

-
ro

nm
en

ts

Ta
ilo

rin
g

Pr
oc

es
se

s
Hu

m
an

 C
ap

ita
l

M
an

ag
em

en
t

Sp
ec

ia
lty

 E
ng

in
ee

r-
in

g
Ac

tiv
iti

es
Se

cu
rit

y
an

d
Sa

fe
ty

Pr
of

es
sio

na
l

an
d

Le
ad

er
-

sh
ip

De

ve
l-

op
m

en
t

Chapter 24 Competency models

388

24.6 A two-dimensional competency maturity model
framework for benchmarking the competency models
of systems engineers

This section introduces a CMMF for benchmarking the different competency
models.

24.6.1 The vertical dimension

The vertical dimension is based on three categories:

1. knowledge,
1. cognitive characteristics, and
2. individual traits

24.6.1.1 Category 1: Knowledge

Knowledge covers:
 systems engineering,
 the problem domain,
 the implementation domain in which the system is being realized,

the solution domain in which the systems engineering is being applied to
realize the solution system.

Opinions vary on what constitutes systems engineering; each opinion will
have a different vision of the knowledge content. This was reflected in the
different ways of assessing systems engineering proficiency discussed above.
In addition, since systems engineers apply their skills in different domains
(e.g. aerospace, land and marine transportation, information technology,
defence, etc.), there is an assumption that to work in any specific domain,
the systems engineer will need the appropriate problem, solution and im-
plementation domain knowledge.

Knowledge of “systems engineering process” and systems engineering
tools is considered as part of systems engineering rather than the implemen-
tation domain. The implementation domain sets the constraints on both the
process and solution system. For example, the development system for a
software system is in the implementation domain. Implementation domain
knowledge relates to the properties of the compiler as well as the character-
istics (especially limitations) of the development hardware. In another envi-
ronment, the implementation domain might include thermal vacuum cham-
bers and other equipment used to partially or fully develop and test the so-
lution system.

It is tempting to assume that the problem domain and the solution do-
main are the same, but they are not necessarily so for example, the problem
domain may be urban social congestion, while the solution domain may be a

Chapter 24 Competency models

389

form of underground transport to relieve that congestion. Lack of problem
domain competency may lead to the identification of the wrong problem
and lack of solution domain competency may lead to selection of a less than
optimal or even an unachievable solution system. Risk management is an
activity (process) that requires competency in the problem, solution and
implementation domains. Similarly, a “system failure” needs to be distin-
guished from a “system problem”.

The large number of implementation, problem and solution domains in
which systems engineering takes place also requires a corresponding large
SEBoK which is not necessarily applicable to all systems engineers. Conse-
quently, the knowledge must be tailored to the specific problem, solution
and implementation domains and the phase of the system lifecycle. For ex-
ample:

 Requirements analysis. Systems engineers performing requirements
analysis will need to know how to develop a matching set of specifica-
tions that describe the mission and support functions of the solution
system in its fielded operational context; a different subset of systems
engineering knowledge to that needed by systems engineers performing
test and evaluation.

 Control or operations and maintenance environment. Systems engi-
neers working in a control or operations and maintenance environment
will need knowledge of the software development process and the
tools, and the properties of the underlying development hardware plat-
forms as well as the solution domain in which the system is to be field-
ed.

 Electro-optical engineering. Systems engineers working in an electro-
optical engineering factory will need knowledge of how the various
components can be configured without disturbing the performance of
the system.

 Socio-technical systems. Systems engineers working on socio-technical
systems will need the appropriate knowledge of human behaviour and
how humans interact with technology and each other.

 And so on.

24.6.1.2 Category 2: cognitive characteristics

Cognitive characteristics namely systems thinking and critical thinking pro-
vide the problem identification and solving skills148 to think, identify and
tackle problems by solving, resolving, dissolving or absolving problems
(Ackoff, 1999) page 115), in both the conceptual and physical domains.

148 Problem solving and identification skills have been listed separately to map into
Type IV and V as discussed below.

Chapter 24 Competency models

390

Problem identification and solving competency is not the same thing as
problem domain competency.

24.6.1.2.1 holistic thinking

The approach to the assessment of systems thinking was developed from
the only systematic and systemic approach to applying systems thinking dis-
covered in the literature (Richmond, 1993). Further research149 based on
Richmond’s work produced a set of nine viewpoints called System Thinking
Perspectives (STP) (Kasser and Mackley, 2008) which evolved into the Holis-
tic thinking perspectives (HTP) (Kasser, 2013) and have been used in teach-
ing holistic thinking in postgraduate classes and workshops in Israel, Japan,
Singapore, Taiwan and the UK. The HTPs are Operational, Functional, Big
Picture, Structural, Generic, Continuum, Temporal, Quantitative and Scien-
tific. Of these nine perspectives, the first eight are descriptive and the ninth
is prescriptive. The eight descriptive perspectives are used to view or de-
scribe the situation, while the prescriptive perspective is the one which con-
tains the statements of the problem and candidate solutions.

24.6.1.2.2 Critical thinking

A literature review showed that the problem of assessing the degree of criti-
cal thinking in students seemed to have already been solved (Eichhorn,
2002; Wolcott and Gray, 2003; Allen, 2004; Paul and Elder, 2006). Wolcott
and Gray aggregated lists of critical thinking abilities by defining five levels of
critical thinking (Wolcott and Gray, 2003). In addition, Wolcott’s method for
assessing a critical thinking level was very similar to that used by Biggs for
assessing deep learning in the education domain (Biggs, 1999). Since a tai-
lored version of the Biggs criteria had been used successfully at the Universi-
ty of South Australia for assessing student’s work in postgraduate classes on
systems engineering (Kasser, et al., 2005), Wolcott’s method was adopted
for the CMMF. Wolcott’s five levels (from lowest to highest) are:

0. Confused fact finder.
1. Biased jumper.
2. Perpetual analyzer.
3. Pragmatic performer.
4. Strategic re-visioner.
5. Consider each of them.

24.6.1.2.2.1 Confused fact finder

A confused fact finder is a person who is characterised by the following:
 Looks for the “only” answer.

149 Funded by a grant from the Leverhulme trust to Cranfield University in 2007.

Chapter 24 Competency models

391

 Doesn’t seem to “get it”.
 Quotes inappropriately from textbooks.
 Provides illogical/contradictory arguments.
 Insists professor, the textbook, or other experts provide “correct” an-

swers even to open-ended problems.

24.6.1.2.2.2 Biased jumper

A biased jumper is a person whose opinions are not influenced by facts. This
person is characterised by the following:
 Jumps to conclusions.
 Does not recognise own biases; accuses others of being biased.
 Stacks up evidence for own position; ignores contradictory evidence.
 Uses arguments for own position.
 Uses arguments against others.
 Equates unsupported personal opinion with other forms of evidence.
 Acknowledges multiple viewpoints but cannot adequately address a

problem from viewpoint other than own.

24.6.1.2.2.3 Perpetual analyzer

A perpetual analyser is a person who can easily end up in “analysis paraly-
sis”. This person is characterised by the following:
 Does not reach or adequately defend a solution.
 Exhibits strong analysis skill, but appears to be “wishy-washy”.
 Write papers that are too long and seem to ramble.
 Doesn’t want to stop analysing.

24.6.1.2.2.4 Pragmatic performer

A pragmatic performer is a person who is characterised by the following:
 Objectively considers alternatives before reaching conclusions.
 Focuses on pragmatic solutions.
 Incorporates others in the decision process and/or implementation.
 Views task as finished when a solution/decision is reached.
 Gives insufficient attention to limitations, changing conditions, and stra-

tegic issues.
 Sometimes comes across as a “biased jumper”, but reveals more com-

plex thinking when prompted.

24.6.1.2.2.5 Strategic revisioner

A strategic revisioner is a person who is characterised by the following:
 Seeks continuous improvement/lifelong learning.
 More likely than others to think “out of the box”.
 Anticipates change.
 Works toward construction knowledge over time.

Chapter 24 Competency models

392

24.6.1.3 Category 3: Individual traits

These are the traits providing the skills to communicate with, work with,
lead and influence other people, ethics, integrity, etc. These traits include
communications, personal relationships, team playing, influencing, negotiat-
ing, self-learning, establishing trust, managing, leading, emotional intelli-
gence (Goleman, 1995), and more (Covey, 1989; Frank, 2010; ETA, 2010).
These traits may be selected to suit the role of the systems engineer in the
organisation and assessed in the way that the ETA industry standard compe-
tency models assess those traits (ETA, 2010). There is no need to reinvent
an assessment approach.

24.6.2 The horizontal dimension

The horizontal dimension provides a way to assess the competence of a per-
son in each broad area of the vertical dimension against the levels of increas-
ing ability. The nine competency models discussed above defined proficien-
cy in different ways and in different ranges as shown in Table 24-3. For ex-
ample, Dreyfus and Dreyfus (Dreyfus and Dreyfus, 1986) quoted by Ennis
(Ennis, 2008) describe levels of proficiency that include novice, experienced
beginner, practitioner, knowledgeable practitioner, expert, virtuoso, and
maestro. From the novice who is focused on rules and limited or inflexible in
their behaviour to the individual who is willing to break rules to provide cre-
ative and innovative solutions to business problems. A way to encompass
the existing approaches of assessing systems engineers needed to be devel-
oped.

Systems engineers should be innovators, problem formulators and solv-
ers. Gordon et al. provided a way to identify the difference in cognitive skills
between innovators, problem formulators, problem solvers and imitators
(Gordon G. et al., 1974). The difference is based on:

 Ability to find differences among objects which seem to be similar,
 Ability to find similarities among objects which seem to be different

Table 24-4 Factors conducive to innovation

Ability to find
similarities
among objects
which seem to be
different

HIGH Problem solvers Innovators

LOW Imitators/ Doers Problem
Formulators

LOW HIGH

Chapter 24 Competency models

393

Ability to find differences among
objects which seem to be similar

The differences in the ‘ability to find …’ leads to the different type of
persons shown in Table 24-4 (Gordon G. et al., 1974). For example, problem
formulators score high in ability to find differences among objects which
seem to be similar, and problem solvers score high in ability to find similari-
ties among objects which seem to be different.

Anecdotal evidence (observation and experience) indicated that within
the multichotomy of systems engineering there appeared to be five types of
systems engineers150 (Section 23.3) which may be mapped into Table 24-4 as
shown in Table 24-5.

Table 24-5 Mapping Types into abilities

Ability to find
similarities

among objects
which seem to

be different

HIGH Problem solvers
(Type III)

Innovators
(Type V)

LOW Imitators/Doers
(Type II)

Problem
Formulators

(Type IV)

LOW HIGH

Ability to find differences among
objects which seem to be similar

This Chapter has not attempted to map the types into roles or job titles
because roles and titles vary with organisations. For example a ‘lead sys-
tems engineer’ in one organisation may be performing the same role as a
person with the title ‘senior systems engineer’ or ‘engineering specialist’ in
another organization. Moreover, these five types exist in other disciplines
which would allow for the application of the framework in those disciplines
by changing the knowledge components.

A two-dimensional CMMF showing the assessment of the competency
in increasing levels of competency (Type I to V) in the three categories dis-

150 The terminology of the ‘types’ once explained seems to resonate with the audi-
ence. The terminology has been adopted into common usage in the systems engi-
neering vocabulary in Singapore and in Israel after it was introduced in a workshop in
2010.

Chapter 24 Competency models

394

cussed in Section 24.6.1 is summarised in Table 24-6. Assessment of
knowledge, cognitive skills and individual traits is made in ways already prac-
ticed in the psychology domain and do not need to reinvented by systems
engineers. Where knowledge is required at the conditional level, it includes
procedural and declarative. Similarly, where knowledge is required at the
procedural level, it includes declarative knowledge.

24.7 Benchmarking the nine competency models
Each of the three categories contain some competencies that are common
to all systems engineers and some competencies that apply to specific roles
in specific domains in specific phases of the system lifecycle in specific or-
ganisations. Each competency model thus contains information which can
be allocated into these three categories and allows them to be subjectively
compared or benchmarked as shown in Table 24-7. Findings from this com-
parison, based on the published literature, include:
 The number of levels of proficiency differs between competency mod-

els.
 The definition of the ability for a level of proficiency differs between

competency models.
 The lack of competencies in the implementation domain in all nine

competency models examined. However, it is fair to say that some of
the models do consider the culture in which the systems engineering is
taking place.

24.8 Future research
This section discusses the following future research opportunities.
 Identifying gaps in existing competency models
 Using the CMMF as a competency model.

24.8.1 Identifying gaps in existing competency models

The existing competency models seem to have been populated based on
observing the role of the systems engineer, namely what systems engineers
do in the workplace, and researching the literature for additional require-
ments. These competency models may suffer from errors of omission be-
cause the development methodology does not include a validation function
to determine if something that should be done is not being done (and the
effect of that lack may not show up for some months or even years). Indeed,
this research has identified an error of omission in all of the nine competen-
cy models studied, namely the lack of competencies in the implementation
domain. In addition, benchmarking used alone produces followers, not

Chapter 24 Competency models

395

leaders. Benchmarking should be used only as a check to make sure your
competency model151 is not lacking some necessary competency.

A useful tool for identifying both errors of commission and errors of
omission is workflow analysis. Workflow analysis is a methodology that can
be used to observe existing workflows and also to develop a conceptual ref-
erence model. The conceptual reference competency model activities can
then be compared to those being observed and any missing functions identi-
fied and initiated. A useful conceptual reference model is the Generic Ref-
erence Model (Hitchins, 2007), with its mission management, resource man-
agement, viability management, behaviour management and form man-
agement sub-models.

A useful tool for mapping the activities in the workflow and hence the
competencies needed to perform those activities in an objective manner is
the HKMF shown in Figure 21-3. The activities that need to be performed in
each area of the framework are identified in the form of descriptions, sce-
narios, use cases, vignettes, concepts of operations152, etc. For example,
consider the requirements engineering activities in Layer 2 Area 2B of the
HKMF, these activities include requirements elicitation and elucidation. The
appropriate competencies and proficiencies for the type of person perform-
ing the activity in each of the scenarios can then be determined via any one
of the many methods used in the human resources domain.

24.9 Using the CMMF as a competency model
In order for an organization to use the CMMF, the contents of each of the
three categories must be determined and the CMMF populated. If the or-
ganization already has a competency model then the competencies need to
be transferred from the organisations’ competency model into the appropri-
ate areas in the CMMF. If the organization does not have a competency
model and wishes to develop one, then the CMMF allows standardization of
groupings which helps identify both errors of commission and errors of
omission. However, before developing a competency model, a cost-benefit
trade-offs should be performed since the amount of effort will depend on
the level of detail required. The development effort should be for a model
that will be useful, not something that will keep the human resource de-
partment busy.

151 Or anything else you are creating and wish to benchmark.
152 The terminology varies but the concept is the same.

Chapter 24 Competency models

396

Ta
bl

e
24

-6
A

Co
m

pe
te

nc
y

M
od

el
 M

at
ur

ity
Fr

am
ew

or
k

(C
M

M
F)

fo
r S

ys
te

m
s E

ng
in

ee
rs

Ty
pe

 I
Ty

pe
 II

Ty
pe

 II
I

Ty
pe

 IV
Ty

pe
 V

Ca
te

go
ry

 1
: K

no
w

le
dg

e
ar

ea
s

Sy
st

em
s e

ng
in

ee
rin

g
De

cl
ar

at
iv

e
Pr

oc
ed

ur
al

Co
nd

iti
on

al
Co

nd
iti

on
al

Co
nd

iti
on

al

Pr
ob

le
m

 d
om

ai
n

De
cl

ar
at

iv
e

De
cl

ar
at

iv
e

Co
nd

iti
on

al
Co

nd
iti

on
al

Co
nd

iti
on

al

Im
pl

em
en

ta
tio

n
do

m
ai

n
De

cl
ar

at
iv

e
De

cl
ar

at
iv

e
Co

nd
iti

on
al

Co
nd

iti
on

al
Co

nd
iti

on
al

So
lu

tio
n

do
m

ai
n

De
cl

ar
at

iv
e

De
cl

ar
at

iv
e

Co
nd

iti
on

al
Co

nd
iti

on
al

Co
nd

iti
on

al

Ca
te

go
ry

 2
: C

og
ni

tiv
e

ch
ar

ac
te

ris
tic

s

Ho
lis

tic
 T

hi
nk

in
g

De
sc

rip
tiv

e
(8

)
De

cl
ar

at
iv

e
Pr

oc
ed

ur
al

Co
nd

iti
on

al
Co

nd
iti

on
al

Co
nd

iti
on

al

Pr
es

cr
ip

tiv
e

(1
)

N
o

N
o

Pr
oc

ed
ur

al
N

o
Co

nd
iti

on
al

Cr
iti

ca
l T

hi
nk

in
g

Co
nf

us
ed

 fa
ct

 fi
nd

er
Pe

rp
et

ua
l

an
al

ys
er

Pr
ag

m
at

ic
pe

rf
or

m
er

Pr
ag

m
at

ic

pe
r-

fo
rm

er
St

ra
te

gi
c

re
-

vi
sio

ne
r

Ca
te

go
ry

 3
: I

nd
iv

id
ua

l t
ra

its
 (t

yp
ic

al
 sa

m
pl

e)
 o

rg
an

isa
tio

na
l s

pe
ci

fic
 n

ot
 sh

ow
n

Co
m

m
un

ic
at

io
ns

N
ee

de
d

N
ee

de
d

N
ee

de
d

N
ee

de
d

N
ee

de
d

M
an

ag
em

en
t

N
ot

 n
ee

de
d

N
ee

de
d

N
ee

de
d

N
ee

de
d

N
ee

de
d

Le
ad

er
sh

ip
N

ot
 n

ee
de

d
N

ot
 n

ee
de

d
N

ee
de

d
N

ee
de

d
N

ee
de

d

Chapter 24 Competency models

397

Ta
bl

e
24

-7
Co

m
pa

ris
on

 o
fc

om
pe

te
nc

y
m

od
el

s

As
se

ss
m

en
t

ap
-

pr
oa

ch
KS

A’
s

IN
CO

SE
CS

EP
 E

xa
m

SE
CF

CE
ST

SE
CT

N
AS

A
20

10
JP

L
SE

A
M

IT
RE

N
DI

A

Ca
te

go
ry

1:

Kn
ow

le
dg

e

Sy
st

em
s E

ng
in

ee
rin

g
Ye

s [
1]

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

So
lu

tio
n

do
m

ai
n

Im
pl

ie
d

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Im
pl

em
en

ta
tio

n
do

m
ai

n
[3

]
Im

pl
ie

d
N

o
Pa

rt
ia

l
[4

]
N

o
N

o
Pa

rt
ia

l
[4

]
Pa

rt
ia

l
[4

]
Pa

rt
ia

l
[4

]
N

o

Pr
ob

le
m

 d
om

ai
n

Im
pl

ie
d

N
o

N
o

Ye
s

Ye
s

Ye
s

Im
pl

ie
d

Ye
s

Ye
s

Ca
te

go
ry

2:

Co
gn

i-
tiv

e
sk

ill
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Im
pl

ie
d

Ye
s

Ye
s

Ye
s

Ca
te

go
ry

 3
:

In
di

vi
d-

ua
l T

ra
its

[5
]

Ye
s

N
o

U
nc

le
ar

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

In
cr

ea
sin

g
le

ve
ls

of
pr

of
ic

ie
nc

y
N

o
N

o
(P

as
s/

Fa
il)

Pa
rt

ia
l

[2
]

N
o

Ye
s

Ye
s

N
o

Ye
s

N
o

Chapter 24 Competency models

398

Notes to Table 24-7.

In several instances, the various ways in which the competency models de-
scribe the competencies made populating this table a subjective exercise.

The use of the word ‘Yes’ should be read with the understanding that each
competency model identifies a different set of knowledge in each of the
knowledge area rows in the table.

[1] Subjective approach, knowledge seems to be dependent on situation, no
objective reference for validating characteristics.

[2] Lowest level is in a different dimension to remaining levels

[3] Systems engineering tools have been allocated to the systems engineer-
ing knowledge area rather than to implementation domain.

[4] Does contain knowledge about the culture of the organisation is which
the systems engineering is taking place.

[5] These will depend on the requirements for the postion.

Candidates must qualify at the appropriate proficiency level in all three
categories to be recognised as being competent that competency level.
While examination questions can require the respondent to use conditional
knowledge, the successful application of conditional knowledge in the real
world must be directly demonstrated by results documented in the form of
KSAs supported by awards, letters and certificates of appreciation from third
parties (e.g. employers, customers, etc.). The assessment could thus be in
two parts, one part by examination for the lower levels, the second by a
portfolio demonstrating successful experience for the higher levels. This
model is followed by the INCOSE Certification Program in which the ESEP is
awarded on the basis of a portfolio. Other higher level qualifications based
on portfolios are awarded by the Association for Learning Technology (ALT)
and the Institution of Engineering and Technology (IET) in the UK namely
Certified Member of the ALT (CMALT) and Fellow of the IET (FIET).

Assessment of a candidate is simple in concept as follows.

24.9.1 The cognitive skills and individual traits

Knowledge of the HTPs is assessed as declarative, procedural and conditional
(Woolfolk, 1998). Examination questions may be written to require the re-
spondent to demonstrate the different types of knowledge. Ways of as-
sessing the degree of critical thinking have been described by Wolcott and
Gray (Wolcott and Gray, 2003) and are used herein. The appropriate indi-
vidual traits are assessed as being ‘needed’ or ‘not needed’ at a specific level
of ability.

Chapter 24 Competency models

399

24.9.2 The systems engineering, implementation, problem and solu-
tion domain knowledge

The knowledge is also assessed as being declarative, procedural and condi-
tional (Woolfolk, 1998). The question then arises as what is the knowledge
to be? As stated above, consensus on the contents of a ‘standard’ SEBoK
would be difficult to achieve across organisations and domains if it were to
be based on the role of the systems engineer. That the knowledge compe-
tency is situational rather than generic does not stop the CMMF being popu-
lated by organisations needing competency assessments for their personnel
working in their environment on their projects.

24.10 Summary and conclusions
The Chapter began with a discussion on the need for competent systems
engineers. The Chapter then discussed the role of systems engineers in the
workplace providing examples of a number of points of view as to what
those roles are and alludes to the difficulty of gaining a generic consensus on
the nature of the role of the systems engineer. At that point focus of the
Chapter changed to ways of assessing the competency of systems engineers
using terminology from the domain of cognitive psychology rather than in-
venting new systems engineering terminology for existing concepts. The
Chapter continued with a brief examination and discussion of nine different
competency models and showed that each competency model seems to
have been designed for a different purpose in different domains, times and
places.

The Chapter then introduced a two-dimensional CMMF that can be used
for both benchmarking existing competency models and as a competency
model by those organisations that do not yet have a competency model and
wish to develop one. The nine competency models were benchmarked us-
ing the CMMF and one significant finding from this comparison is the lack of
competencies in the implementation domain in all nine-competency models
studied. The Chapter concluded with suggestions for future research.

Chapter 25 Unifying the different processes

401

25Unifying	the	different	systems	
engineering	processes

“It ain’t what you don't know that gets you into trouble.
It’s what you know for sure that just ain’t so.” - Mark Twain
1835-1910.

Teaching the systems engineering process is difficult because of the contra-
dictory and confusing process information in the literature as well as the
overlap between the systems engineering process and the problem solving
process as well as the confusion between the systems engineering process
and the system lifecycle. This Chapter resolves the conflict and confusion
and documents two separate meta-systems engineering processes; a ‘plan-
ning’ process that produces the planning documents and a ‘doing’ process in
which the plan is implemented. The result of this research is a meta-model
of the two systems engineering processes that not only facilitate teaching by
showing that all documented systems engineering processes are subsets of
the meta-processes, but also show how agile systems engineering, lean sys-
tems engineering and evolutionary acquisition all fit together in an integrat-
ed manner.

25.1 Introduction
In teaching systems engineering it has been observed that students that
come into the class knowing some systems In teaching systems engineering
it has been observed that students that come into the class knowing some
systems engineering come out of the class knowing a little more systems
engineering, while students that come into the class not knowing systems
engineering, come out of the class not knowing it a little less. Reflection on
this situation has indicated that there may be ways to improve the way the
systems engineering process is taught, including:

1. Pointing out the myth of the systems engineering process.

2010

Chapter 25 Unifying the different processes

402

2. Explaining the overlap between some versions of the systems engi-
neering process and the problem solving process.

3. The way iteration of/in the systems engineering process is taught.
4. The misuse of functional diagrams to represent processes.

Consider these four points.

25.2 The myth of the single systems engineering process
According to the US DOD 5000 Guidebook 4.1.1, “The successful implemen-
tation of proven, disciplined SEPs results in a total system solution that is--

Robust to changing technical, production, and operating environments;
Adaptive to the needs of the user; and
Balanced among the multiple requirements, design considerations, de-

sign constraints, and program budgets”.

“A single process, standardizing the scope, purpose and a set of devel-
opment actions, has been traditionally associated with systems engineering”
(Arnold, 2000) citing (MIL-STD-499B, 1993) and (IEEE 1220, 1998). However,
there is no single widely agreed upon SEP since over the years, the SEP has
been stated in many different ways, including:

 The (EIA 632, 1994) and (IEEE 1220, 1998) processes shown in Figure
21-13 and Figure 25-1;

 Lists of processes in ISO/IEC 15288 (Arnold, 2002);
 The waterfall process (Royce, 1970);
 The V model version of the process;
 The spiral, incremental and evolutionary models;
 System Lifecycle functions (Blanchard and Fabrycky, 1981) shown in

Figure 25-2;
 State, Investigate, Model, Integrate, Launch, Assess and Re-evaluate

(SIMILAR) (Bahill and Gissing, 1998) shown in Figure 25-3;
 The basic core concepts accepted by most systems engineers (Mar,

2009b);
 A systems engineering approach to addressing a problem (Hitchins,

2007).

Consequently, given the conflicting and contradictory information in the
various versions of the systems engineering process, the systems engineer-
ing process concept is difficult to explain and, teaching has focused on using
the waterfall and V models since, while not representative of the real world,
they are simple to explain (Biemer and Sage, 2009) pages 152 and 153).

Chapter 25 Unifying the different processes

403

Figure 25-1 IEEE 1220 Systems Engineering Process

Figure 25-2 System Lifecycle functions (Blanchard and Fabrycky, 1981)

Figure 25-3 The SIMILAR process (Bahill and Gissing, 1998)

Chapter 25 Unifying the different processes

404

The key insight to understanding the reason for the variety of systems
engineering processes may lie with Biemer and Sage who state that “the
systems engineer creates a unique process for his or her particular develop-
ment effort” (Biemer and Sage, 2009) page 153). Consider each published
version of the systems engineering process 153 as the unique process created
for their particular development effort by someone or some group at some
point in time, at some point in the system lifecycle, in the context of what
they defined as a systems engineering problem and subsequently docu-
mented as their systems engineering process.

Looking for patterns in the various versions of the systems engineering
process listed above as well as others in the literature, one can identity ver-
sions that:

 focus on early stage systems engineering where the problem is explored
and conceptual solutions developed;

 focus on engineering the system and realizing the solution;
 focus on both aspects.

A process is a sequence of activities. The systems engineering process
takes place in the context of the HKMF shown in Figure 21-3. HKMF Column
A contains activities that address the initial problem and conceptual solution
(Kasser, et al., 2009). Columns B, C, D, E and F contain the activities that
realize the solution.

From the Big Picture perspective, there seem to be two interdependent
systems engineering processes:

 The traditional ‘doing’ systems engineering process in which Layer 2
systems engineering is performed. This is the unique systems engineer-
ing process which is constructed for the realization of a specific system.
The activities performed in the unique systems engineering process will
depend on the problem-identification-solution-realization activities that
have and have not been done at the time the unique systems engineer-
ing process is constructed.

 The planning systems engineering process; the process used by the
systems engineer to create the unique systems engineering process.
When designing/planning the unique systems engineering process for
the realization of a system, systems engineers use knowledge based on
experience and the activities functions and processes which can be
found in the processes and Standards listed above and in the literature.
This planning process is a problem solving activity, consequently it ought
to, and does, map into the problem solving process.

153 In a Standard or in a textbook.

Chapter 25 Unifying the different processes

405

25.3 The overlap between some versions of the systems en-
gineering process and the problem solving process

Mar stated, “Most systems engineers accept the following basic core con-
cepts154:

1. Understand the whole problem before you try to solve it.
2. Translate the problem into measurable requirements.
3. Examine all feasible alternatives before selecting a solution.
4. Make sure you consider the total system lifecycle. The birth to

death concept extends to maintenance, replacement and decom-
mission. If these are not considered in the other tasks, major lifecy-
cle costs can be ignored.

5. Make sure to test the total system before delivering it” (Mar,
2009b).

Two outlines of generic problem solving processes are shown in Table
25-1. They are the Global Development Research Center (GDRC) version
which covers the problem identification-solution identification steps (GDRC,
2009) and the Office of Vocational and Adult Education (OVAE) (OVAE, 2005)
which also covers the solution realization and evaluation steps. If one com-
pares these examples of the problem solving process with the functions
(Blanchard and Fabrycky, 1981) shown in Figure 25-2, the SIMILAR process
(Bahill and Gissing, 1998) shown in Figure 25-3 and assertion by (Mar,
2009a), it can be seen that while the aggregation of activities into the steps
are different and the level of detail in each step is different, these versions of
the SEP seem to be the same as the problem solving process.

Table 25-1 Two versions of the problem solving process

GDRC, 2009
1. Problem Definition
2. Problem Analysis.
3. Generating possible Solutions.
4. Analysing the Solutions.
5. Selecting the best Solution(s).
6. Planning the next course of ac-

tion (Next Steps)

OVAE, 2005
1. Identify and Select the Problem
2. Analyse the Problem
3. Generate Potential Solutions
4. Select and Plan the Solution
5. Implement the Solution
6. Evaluate the Solution

The confusion between the systems engineering process and the prob-
lem solving process can be resolved by recognizing that from the problem

154 Of systems engineering, Author’s interpretation.

Chapter 25 Unifying the different processes

406

solving perspective, a man-made system is realized as a solution to a prob-
lem. As such, the parts of the systems engineering process that takes place
in Columns A and C of the HKMF constitute problem-solving processes.

25.4 The way iteration of/in the systems engineering pro-
cess is taught

The iterative nature of systems engineering has sometimes been taught us-
ing the egg diagram shown in Figure 21-13 (EIA 632, 1994) as being applica-
ble to each phase of the system lifecycle in the manner shown in Figure 25-4.
Since the contents of the egg are expressed in Layer 2 realization language it
is difficult to get the concept of iteration across to the students is because
the words have incorrect meanings in the other phases and layers. In addi-
tion, this teaching approach only addresses a part of the iterative nature of
systems engineering which includes the following four types of iteration.

Figure 25-4 A Typical System Lifecycle (UNiSA, 2006)

1. Iteration inside an area of the HKMF.
2. Iteration across a row of the HKMF.
3. Iteration in a column of the HKMF.
4. Iteration of a number of system lifecycles in series.

Consider each of them.
 Iteration inside an area of the HKMF. This type of iteration takes place

when a process is repeated during the production of a product. It is
generally drawn as a circular sequence of activities. Two examples are:

1. The iterative part of the process for producing a document. The
system engineer produces a version of a document, circulates it for
comment, receives comments, incorporates the comments in the
document and circulates the document for further comment

Chapter 25 Unifying the different processes

407

(Kasser, 1995) pages 158-160). This writing-reviewing-update loop
takes place until the criterion for terminating the loop is reached.
Examples of such termination criteria include the document is com-
plete, or the scheduled date for delivering the document has been
reached.

2. The design activities which take place in Columns A.2 and A.3 of the
HKMF.

 Iteration across a row of the HKMF. This type of iteration takes place
when the same sequence of activities is performed in more than one
column of the HKMF. An example is the design process which takes
place at the conceptual level155 in Column A and at the realization level
in Column C.

 Iteration in a column of the HKMF. Systems engineering is a problem
solving discipline and while the types of problems that are found in each
column are different, the tools and techniques used to solve them will
be different but the problem solving approach will most likely be the
same. For example,

 A Layer 3 situation dealing with human issues may require an adap-
tion of an appropriate methodology such as the Soft Systems
Methodology (Checkland and Scholes, 1990) while a Layer 2 situa-
tion in the same column applying to a different project may require
the use of Quality Function Deployment (QFD) (Clausing, 1994),
queuing theory, linear programming or some other mathematical
approach.

 In government acquisitions in Layer 2, the preferred implementa-
tion option determined in Column A is often to outsource the reali-
zation and proving phases to a contractor. In such a situation, Col-
umn A contains the activities that would produce:

 the acquisition plan;
 the tender or request for proposal;
 the tender or proposal evaluation and selection of development

contractor;
 the contract for the realization and proving phases in Columns B to

F.

155 To complicate the situation, the conceptual design process in Column A also iter-
ates a realization design process to the extent needed to show that the conceptual
design is feasible and to identify any risks associated with realizing that design (e.g.
technological, schedule, etc.).

Chapter 25 Unifying the different processes

408

 If the disposal method for a system has not been predetermined,
Column H may cycle though Columns A to F for the system disposal
project.

 Iteration of a number of system lifecycles in series. This type of itera-
tion has a number of names including evolutionary acquisition, sequen-
tial software Builds and the cataract process (Chapter 13). Two ways of
thinking about the nature of this type of iteration are

1. To consider the waterfall with its activities mapped into Columns A
to F as the first iteration through the SEP. Changes are requested in
the performance of the system during Column G. Configuration
control allocates a set of changes to an upgraded version and an it-
eration of the waterfall activities mapped into Columns A to F take
place for each new version of the system.

2. To use two waterfalls, one placed below the other such that the
end of the first Waterfall is in line with the start of the lower water-
fall as shown in Figure 25-5

Figure 25-5 Gantt chart representation of iteration

25.5 The misuse of functional diagrams to represent pro-
cesses

Another teaching difficulty is built into the graphical representations used in
teaching, Consider typical examples; the EIA 632 version (EIA 632, 1994)
shown in Figure 21-13, the IEEE 1220 version (IEEE 1220, 1998) shown in
Figure 25-1, the SIMILAR process shown in Figure 25-3 (Bahill and Gissing,
1998) and the system lifecycle functions shown in Figure 25-2 (Blanchard
and Fabrycky, 1981). These figures do not show processes they show func-

Chapter 25 Unifying the different processes

409

tions and the relationship between the functions. Looping back from the
end of a sequence of functions to the start is generally added in functional
drawings by adding a feedback arrow from the output of a function to the
input of a previous function. Processes take time to implement and time
does not flow backwards so there shall not be feedback lines in a process.
Systems engineers process architect (Chapter 19) or create a unique systems
engineering process for realizing a system (Biemer and Sage, 2009) page
153). The resulting systems engineering process is depicted in the form of
Gantt or PERT style charts not in drawings containing feedback loops. For
example, when a sequence of six tasks need to be repeated (iterated) the
process shall be drawn as a Gantt chart showing a second set of activities
right-shifted as shown in Figure 25-5 instead of as a flow chart with a feed-
back link from the end of Task 6 to the start of Task 1.

25.6 The common systems engineering process
Systems engineering is a problem solving activity as discussed above. Sys-
tems engineers process architect (Chapter 19) or create (Biemer and Sage,
2009) page 153) a unique systems engineering process for realizing a system.
The planning process they use to create the unique systems engineering
process for realizing a system should be common to all systems engineering
activities. If the systems engineering activity is considered as a project, then
a common meta- systems engineering process can be created by combining
the Hitchins (Hitchins, 2007) page 173) and Mar approaches into the follow-
ing 10-step sequence that joins the problem solving process and the solution
realization process (Mar, 2009b):

1. Plan the project.
2. Explore/survey the problem space.
3. Conceive at least two feasible ways to tackling the problem by solv-

ing, resolving, dissolving or absolving it (Ackoff, 1999) page 115). If
the problem is to be absolved, then proceed directly to Step 10.

4. Identify ideal selection criteria for evaluation of the feasible ways of
addressing the problem.

5. Perform trade-offs to determine and select the best way of address-
ing the problem.

6. Fine tune selected option.
7. Formulate strategies and plans to realize preferred option.
8. Realize preferred option.
9. Verify that preferred option tackled the problem.
10. Terminate the project.

Notes:

Chapter 25 Unifying the different processes

410

a) Step 1 may sometimes take place in less detail before the project begins
to determine that there is a need for the project and to allocate an ini-
tial set of resources.

b) Step 1 should include a review of best practices lessons learned from
previous and similar projects to determine what worked and what did
not work (the both the process and product domains) in the context of
the similar projects, and the nature of the differences between the simi-
lar projects and this one.

c) In practice, Steps 3 and 4 may be conducted in parallel, not sequentially.
d) Iteration may take place as discussed above.
e) Step 10 includes documenting the lessons learned from the project.

Restating this meta-problem-solving-solution-realization process as a
‘planning’ process to create the unique systems engineering process, the
wording would be:

1. Plan the project that will create the required planning documenta-
tion for the unique systems engineering process that will realize the
solution system.

2. Explore/survey what needs to be done.
3. Conceive at least two feasible systems engineering processes.
4. Identify ideal selection criteria for evaluation of the systems engi-

neering processes.
5. Perform trade-offs to determine and select the best systems engi-

neering process.
6. Fine tune selected systems engineering process.
7. Formulate strategies and plans to realize preferred systems engi-

neering process.
8. Document preferred systems engineering process using activities as

building blocks in the appropriate planning documentation.
9. Obtain stakeholder consensus that the planned unique ‘doing’ sys-

tems engineering process can realize the solution system.
10. Terminate the project. This step begins the transition from ‘plan-

ning’ to ‘doing’.

25.7 Lean and agile systems engineering
Lean and agile systems engineering do not need special processes and
treatment when designing the unique systems engineering process to realize
a system since:
 Lean systems engineering takes place when the unique systems engi-

neering process designed to realize the system does not contain any
non-productive activities. Since non-productive activities are wasteful,
lean systems engineering should be the norm.

Chapter 25 Unifying the different processes

411

 Agile systems engineering takes place when the system lifecycle is short
enough to deliver a solution in time to deal with the problem. In a situa-
tion where the problem changes during the time the solution is being
developed, the systems engineering process should iterate a number of
system lifecycles to provide timely solutions to the changing problems.
This is the evolutionary paradigm albeit with a shorter than usual lifecy-
cle time and is not a special case of systems engineering.

25.8 Summary
Starting with the observation that in teaching systems engineering students
that come into the class knowing some systems engineering come out of the
class knowing a little more systems engineering, while students that come
into the class not knowing systems engineering, come out of the class not
knowing it a little less, the Chapter discussed four problems associated with
the way the systems engineering process is taught and clarified some of the
confusion and contradictory information associated with current teaching
approaches.

25.9 Conclusions
This research has shown that the single systems engineering process is a
myth due to the way the systems engineering process is currently taught.
From the Big Picture perspective, there seem to be two interdependent
parts of a meta-systems engineering process, one for ‘planning’ and one for
‘doing’ or realizing the solution system:
 The unique ‘doing’ systems engineering process is constructed for the

realization of a specific system. When designing the unique systems en-
gineering process for the realization of a system in the areas of the
HKMF to be inhabited by the unique systems engineering process, sys-
tems engineers use knowledge based on experience and the activities
functions and processes which can be found in the processes and Stand-
ards listed above and in the literature as building blocks. The activities
to be performed in the unique systems engineering process will depend
on the work that has and has not been done at the point in the system
lifecycle in which the process is constructed.

 The second part of the meta-systems engineering process is the ‘plan-
ning’ process used by the systems engineer to create the unique sys-
tems engineering process. Since this process is a problem solving activi-
ty, it ought to, and does, map into the problem solving process.

This research has also:

Chapter 25 Unifying the different processes

412

 Shown that agile systems engineering and lean systems engineering are
not special cases of systems engineering and should be the norm.

 Clarified the conflicting and contradictory information in the various
versions of the systems engineering processes by viewing them as dif-
ferent unique subsets of the meta- systems engineering process appro-
priate to their situation.

 Determined that the columns in the HKMF may need adjusting. The
HKMF was developed from the (EIA 632, 1994) and (IEEE 1220, 1998)
perspectives and rolled up the early phases of the system lifecycle into a
single phase labelled ‘needs identification’. However, during the course
of developing a framework for a SEBoK (Sections 12, 21 and 23) Column
A, the ‘needs identification’ phase had to be expanded into three sub-
phases to properly address the problem exploration and solution de-
termination phases inside Column A.

 Raised the need for further research to explore aligning the columns of
the HKMF (phases of the system lifecycle) with the appropriate steps of
the problem solving process perhaps by expanding Column A and rolling
up Columns C, D, E and part of F into a single ‘realization’ column. This
change would keep the number of columns manageable and should fur-
ther facilitate teaching about the SEP.

Since the unique SEP is constructed from ‘building blocks’ described in
the Standards, text books and other literature, further research should be
performed to create standard set of building blocks for the systems engi-
neering and non-systems engineering activities in each area of the HKMF.
Use of these process building blocks would be similar to the way electronic
engineers use digital integrated circuits to create digital circuits. The build-
ing blocks would have a standard format. Inclusion of the building blocks
and a software agent to verify that the blocks are linked together (in a simi-
lar manner to the way requirements management tools monitor traceability)
would be a useful way of adding intelligence to project management tools.

Chapter 26 Seven systems engineering myths

413

26Seven	systems	engineering	myths	
and	the	corresponding	realities

“It ain’t what you don't know that gets you into trouble.
It’s what you know for sure that just ain’t so.” - Mark Twain
1835-1910.

This Chapter states that systems engineering is a discipline characterized by
debates based on subjective opinions, with participants talking past each
other, a lack of listening and a number of myths. The opinions expressed in
this Chapter are based on some of the findings from research into the nature
of systems engineering that began in 1994 and have been documented in
this book. The Chapter discusses seven myths of systems engineering and
shows the nature of the myth and the reality, and explains how and why
each myth arose.

26.1 Introduction
In the second session of the Academic Forum at the 2009 International Sym-
posium in Singapore, the state of systems engineering as a discipline was
compared to the state of:
 electrical engineering before Ohm’s law was postulated,
 electrical engineering before Maxwell’s equations were stated, when

engineers built motors by winding coils but had no theory upon which to
predict the behaviour of the motor before powering it up for the first
time

 chemistry before the periodic table of elements was discovered, and
 medicine in the 1800’s before medical science provided a theory of why

some medications work and why some don’t.

Namely systems engineering is in its early stages. A discipline in these
stages is characterized by debates based on subjective opinions, with partic-
ipants talking past each other, a lack of listening, contradictory and confus-
ing information and a number of myths. This Chapter addresses some of
those myths and the opinions expressed in this Chapter are based on find-

2010

Chapter 26 Seven systems engineering myths

414

ings from research into the nature of systems engineering that began in
1994. These partial findings are grouped herein as seven myths of systems
engineering. The Chapter shows the nature of each myth, the reality, and
explains how and why each myth arose. The myths discussed are:

 Myth 1: There are Standards for systems engineering.
 Myth 2: The “V” model of the systems engineering process
 Myth 3: Follow the systems engineering process and all will be well
 Myth 4: Complexity needs new tools and techniques
 Myth 5: Systems of systems are a different class of problem and need

new tools and techniques
 Myth 6: Changing requirements are a cause of project failure so get the

requirements up front.
 Myth 7: The systems engineering process.

Consider each myth and corresponding reality.

26.2 Myth 1: There are Standards for systems engineering

26.2.1 The myth

MIL-STD 499, EIA 632, IEEE 1220 and ISO/IEC 15288 (MIL-STD-499, 1969; EIA
632, 1994; IEEE 1220, 1998; Arnold, 2002) are commonly thought of as sys-
tems engineering standards.

26.2.2 The reality

The reality is that the approved Standards used in systems engineering cover
systems engineering management and the processes for engineering a sys-
tem; that is they do not seem to actually apply to systems engineering.
Thus:
 Mil-STD-499 covers systems engineering management (MIL-STD-499,

1969).
 Mil-STD-499A covers engineering management (MIL-STD-499A, 1974)

dropping the word ‘systems’ from the title.
 The draft (MIL-STD-499B, 1993) and MIL-STD-499C (Pennell and Knight,

2005) Standards contain the words “systems engineering” in their titles
but the Standards were never approved.

 ANSI/EIA-632 covers processes for engineering a system (ANSI/EIA-632,
1999).

 The IEEE 1220 Standard is for the application and management of the
systems engineering process (IEEE 1220, 1998).

 The ISO/IEC 15288 Standard lists processes performed by systems engi-
neers (Arnold, 2002) and hence may be considered as being applicable
to the role of the systems engineer rather than to the activities known

Chapter 26 Seven systems engineering myths

415

as systems engineering. In addition, many of the activities in ISO/IEC
15288 also overlap those of project management.

The lack of coverage of early stage systems engineering in the standards
and the Capability Maturity Model Integration (CMMI) was discussed in Sec-
tion 23.3.

Studies have shown that the cost of a system is determined in its early stag-
es. A typical example shown in Figure 26-1 is a Defense Acquisition Universi-
ty study quoted in the INCOSE systems engineering handbook (Haskins,
2006b) page 2.6 of 10). The figure shows that 70% of costs of a system are
committed by activities in the early stage of systems engineering; yet the
Standards ignore those early stages and so seem to be focused on the wrong
end of the system lifecycle.

Figure 26-1 When costs are committed lifecycle

The DODAF was designed to be used to “provide correct and timely in-
formation to decision makers involved in future acquisitions of communica-
tions equipment” (DoDAF, 2004). Volume i contains 83 pages of definitions,
guidelines, and background; volume ii contains 249 pages of product de-
scriptions. The Deskbook contains 256 pages of supplementary information
to framework users. The underlying data model comes with 696 pages and
over 1200 data elements. The degree of micromanagement is phenomenal
and expensive. Even a limited subset of the required information took
45,000 man-hours to produce (Davis, 2003). A chart mapping the degree of
micromanagement in the standards over time (as measured by the thickness

Chapter 26 Seven systems engineering myths

416

of the document) is shown in Figure 26-2 which roughly corresponds to the
same curve as the cost to fix a defect as a function of the time the defect is
discovered156. As stated above, the early stages of systems engineering to
the left of the vertical axis in Figure 26-2 is not covered by the standards.
While DOD 5000 (DOD 5000.2-R, 2002) pages 73-74) does call out some of
the early stage activities, those activities are called out as part of the sepa-
rate seemingly independent CAIV process which takes place before the DOD
5000.2-R systems engineering process begins. CAIV is to be performed by
Integrated Product and Process Development (IPPD) activities which involve
organizing the different functions to work concurrently and collectively so
that all aspects of the lifecycle for the various concepts are examined and a
balanced concept emerges (DOD IPPD, 1998). In broad terms, the objectives
of the IPPD concept exploration phase are fourfold:

Figure 26-2 Increase in pages in Standards over time

1. to perform concept studies to investigate different solutions,
2. to evaluate these different concepts,
3. to perform trade-off studies, and
4. to define the requirements for the remainder of the acquisition

program.

So, the US DOD moved early stage systems engineering out of systems
engineering into CAIV and the activities were to be performed by IPPD teams
rather than by systems engineers. The DOD paradigm resulted in textbooks
which comply with DOD 5000 (DOD 5000.2-R, 2002), pages 83-84) and con-
sider requirements as one input to the systems engineering process (Martin,
1997) page 95), (Eisner, 1997) page 9), (Wasson, 2006) page 60).

156 No connection between the items is implied.

Chapter 26 Seven systems engineering myths

417

Standards continue to appear yet we need to stop legislating processes,
the micromanagement of processes and the production of lists of boxes to
be ticked and start educating Type V systems engineers who can solve prob-
lems (Section 23.3).

26.3 Myth 2: The “V” model of the systems engineering pro-
cess

26.3.1 The myth

The V diagram is often used as a description of the systems engineering pro-
cess (Section 20.2). Consider the representation of the V model in Figure
26-3 (Caltrans, 2007) and the typical representation of the waterfall model
shown in Figure 26-4. Note that if the last two boxes in the waterfall are
moved up to the corresponding levels as the first two boxes in the waterfall,
the result is a V.

Figure 26-3 Example of the V Model (Caltrans, 2007)

26.3.2 The reality

The reality is that the V is the waterfall just drawn differently (Section 20.2)!

26.3.3 The dark side of the V

The use of the V view as a process model also perpetuates the following un-
desired practices.

Chapter 26 Seven systems engineering myths

418

Figure 26-4 Redrawing the waterfall model

 Lack of prevention of defects.
 Failure to consider changes to customer needs during development of

the solution system.

26.3.3.1 Lack of prevention of defects

When the V diagram is used in a simplistic manner to depict the relationship
between development and T&E there seems to be no place in the diagram
for the prevention of defects (Section 20.2). While the development team
implements the system, the test team is busy planning the tests. A defini-
tion of a successful test is one that finds defects157 (Myers, 1979). This is
because if no defects are found, the result is ambiguous, because either
there are no defects or the testing was not good enough to detect any de-
fects. The lack of prevention of defects escalates costs. Deming wrote
“Quality comes not from inspection, but from improvement of the production
process” (Deming, 1986) page 29). He also wrote “Defects are not free.
Somebody makes them, and gets paid for making them” (Deming, 1986)
page 11). If the test team can identify defects to test for, why can’t they
hold a workshop or other type of meeting to sensitize the development
team to those defects and hence prevent them from being built into the
system? Such workshops in postgraduate courses at UMUC (1997-1999) and
the UniSA (2000-2006) have sensitized students to the problems caused by
poorly written requirements (Kasser, et al., 2003).

157 As opposed to the goal of the system development team which is to produce a
defect free system.

Chapter 26 Seven systems engineering myths

419

26.3.3.2 Failure to consider changes to customer needs during de-
velopment of the solution system

The V is a redrawn waterfall as shown in Figure 26-4 and suffers from the
same defect, namely lack of consideration of changes in customer needs.
Some attempt however is sometimes made to include the effect of these
changes by drawing two V’s in series.

26.4 Myth 3: Follow the systems engineering process and all
will be well

26.4.1 The myth

The myth of the single systems engineering process to was discussed in
Chapter 25.

26.4.2 The reality

The reality in the literature is that excellence comes from people not pro-
cess. The much quoted Chaos study (CHAOS, 1995) fails to mention process
or lack thereof as a major contribution to project success or failure (Section
20.8). The literature is full of advice as to how to make projects succeed
(Harrington, 1995; Peters, 1987; Peters and Austin, 1985; Rodgers, et al.,
1993; Peters and Waterman, 1982) which in general tend to ignore process
and focus on people. Systems engineers focus on developing processes for
organizations – namely the rules for producing products. Companies don’t
want employees who can follow rules; they want people who can make the
rules (Hammer and Champy, 1993) page 70). The contribution of good peo-
ple in an organization was recognized in the systems engineering literature
about 50 years ago, namely “Management has a design and operation func-
tion, as does engineering. The design is usually done under the heading of
organization. It should be noted first that the performance of a group of
people is a strong function of the capabilities of the individuals and a rather
weak function of the way they are organized. That is, good people do a fairly
good job under almost any organization and a somewhat better one when
the organization is good. Poor talent does a poor job with a bad organiza-
tion, but it is still a poor job no matter what the organization. Repeated re-
organizations are noted in groups of individuals poorly suited to their func-
tion, though no amount of good organization will give good performance.
The best architectural design fails with poor bricks and mortar. But the pay-
off from good organization with good people is worthwhile” (Goode and
Machol, 1959) page 514). Excellence is in the person not the process. Again
the focus should be on developing Type V engineer leaders (Section 23.3)
rather than on developing more and more detailed processes.

Chapter 26 Seven systems engineering myths

420

26.5 Myth 4: Complexity needs new tools and techniques
Systems engineering has not delivered on its promise to meet the challenge
of complexity as documented by Chestnut who wrote “Characteristic of our
times are the concepts of complexity, growth and change” (Chestnut, 1965)
page 1) and “in a society which is producing more people, more materials,
more things, and more information than ever before, systems engineering is
indispensable in meeting the challenge of complexity” (Chestnut, 1965) page
vii). There is a growing dichotomy in the literature on the subject of complex
systems.

26.5.1 The myth

The myth is represented in literature on the need to develop new tools and
techniques to manage them. For example:
 Bar-Yam who proposed that “complex engineering projects should be

managed as evolutionary processes that undergo continuous rapid im-
provement through iterative incremental changes performed in parallel
and thus is linked to diverse small subsystems of various sizes and rela-
tionships. Constraints and dependencies increase complexity and should
be imposed only when necessary. This context must establish necessary
security for task performance and for the system that is performing the
tasks. In the evolutionary context, people and technology are agents
that are involved in design, implementation and function. Manage-
ment’s basic oversight (meta) tasks are to create a context and design
the process of innovation, and to shorten the natural feedback loops
through extended measures of performance” (Bar-Yam, 2003). Bar-Yam:

 quoted the Chaos study (CHAOS, 1995) suggesting that the systemic
reason for the challenged project is their inherent complexity. That
might be one finding, however, the general finding from the Chaos
study that the systemic reason for the challenged projects is poor
management!

 Cited own prior work “for all practical purposes adequate testing of
complex engineered systems is impossible”

 Suggested evolutionary process for engineering large complex sys-
tems.

26.5.2 The reality

The reality is represented in the literature on techniques such as aggregation
which masks the underlying complexity to ensure that only the pertinent
details for the particular situation to deal with the issues are considered. For
example:
 Jenkins defined systems engineering as “the science of designing com-

plex systems in their totality to ensure that the component subsystems

Chapter 26 Seven systems engineering myths

421

making up the system are designed, fitted together, checked and oper-
ated in the most efficient way” (Jenkins, 1969).

 Maier and Rechtin who recommend that the way to deal with high lev-
els of complexity is to abstract the system at as high a level as possible
and then progressively reduce the level of abstraction (Maier and Recht-
in, 2000).

There seem to be two types of complexity as follows:

 Real world complexity - in which elements of the real world are related
in some fashion, and made up of components. This complexity is not
reduced by appropriate abstraction it is only hidden.

 Artificial complexity – arising from either poor aggregation (Maier and
Rechtin, 2000) or elements of the real world that, in most instances,
should have been abstracted out when drawing the internal and exter-
nal system boundaries, since they are not relevant to the purpose for
which the system was created. It is this artificial complexity that gives
rise to complication in the manner of Rube Goldberg or W. Heath Robin-
son158. For example, in today’s paradigm, complicated drawings are
generated that contain lots of information159 and the observer abstracts
information as necessary from the drawings. The natural complexity of
the area of interest is included in the drawings. Hence the system is
thought to be complex.

Dealing with complexity means using abstraction and elaboration
(Hitchins, 2003) pages 93-95) coupled with domain knowledge to develop an
understanding of the situation, namely interrelationships among the system
components and knowing which are pertinent to the situation and which can
be safely ignored. For example, the space transportation system (space
shuttle) and the international space station are both complex systems.
However, when considering the problem of docking one to the other all as-
pects of the situation can be abstracted out except for the relative velocities,
distance and alignments (yaw and pitch).

Perhaps the existence of the dichotomy is due to the observation that
“the classification of a system as complex or simple will depend upon the
observer of the system and upon the purpose he has for considering the sys-
tem” (Jackson and Keys, 1984). Bar-Yam seems to drawing conclusions from
poor engineering and management. He is correct in writing “that for all
practical purposes adequate testing of complex engineered systems is impos-
sible”; However the Continuum perspective indicates that Bar Yam’s state-

158 Cartoonists in the USA and UK who drew cartoons of complicated systems de-
signed to perform simple functions.
159 DoDAF OV diagrams can be wonderful examples of complexity.

Chapter 26 Seven systems engineering myths

422

ment only applies to the architectures in use today; there should be other
architectures that would allow adequate testing. His suggestion for an evo-
lutionary process has been applied to all types for systems since antiquity.
The concept of establishing baselines and then using a “build a little, test a
little” approach is well established in all areas of activity.

26.6 Myth 5: Systems of systems are a different class of
problem and need new tools and techniques

There is a dichotomy on the issue similar to the dichotomy on complexity.
The earliest reference to system of systems found in the literature was Jack-
son and Keys who wrote that a problem solver needs a methodology for [se-
lecting the appropriate methodology for] solving a problem (Jackson and
Keys, 1984) which has nothing to do with the use of the term in modern sys-
tems engineering.

26.6.1 The myth

Allison and Cook defined a system of systems as “a system made up of ele-
ments that are not acquired or designed as a single system but are acquired
over time and are in continuous evolution” (Allison and Cook, 1998). They
categorized system of systems are permanent, such as airlines and national
Defence forces, and temporary, ephemeral or virtual examples of such as
multi-national peace keeping forces and project teams. Cook stated that
“the term system of systems in its permanent sense has come to mean a set
of interdependent systems evolving at different rates, each at a different
phase of their individual system lifecycles” (Cook, 2001). Sillitto stated,
“physically, a system of system looks just like a (big, spread-out) system with
the following characteristics:
 Managerial and operational independence of the elements
 The elements have purpose and viability independent of the system of

systems
 procured asynchronously, different budgets
 Not necessarily specified to be compatible
 May be competing against each other for budget and resources
 Emergent properties created by action at a distance through sharing

information,
 system of systems is continually operating (or ready to operate),
 Key attributes are agility and dependability,

System projects must be integrated into the “live” system of systems
during operations” (Sillitto, 2008).

Chapter 26 Seven systems engineering myths

423

26.6.2 The reality

The reality is that there is recognition that systems exist within a hierarchy of
systems in the context of adjacent systems and one person’s system is an-
other person’s subsystem. The characteristics of systems of systems de-
scribed above are the characteristics of systems in Layer 3 of the HKMF. For
example, Sillitto’s description would apply to the Allied convoys in the North
Atlantic Ocean in World War II. Optimizing those convoys was a problem
that was solved using Operations Research160.

Other uses of the term “system of systems” describe an exploded view
of a system containing several layers in the hierarchy of systems in a single
drawing, where one person’s subsystem is another person’s system

The problems being addressed are those that Operations Research was
set up to address in the 1940s and the tools and techniques exist and have
existed for the last 50 years. Tools for systems engineering in the 1950s and
1960s were (Au and Stelson, 1969; Chestnut, 1965):

 Probability
 Single thread – system logic
 Queuing theory
 Game theory
 Linear programming
 Group dynamics
 Simulation
 Information theory

These tools were mainly used in the early stages of systems engineering.
Since these early stages of systems engineering had been ignored in the
standards, and the text books followed the standards, over time tools for
systems engineering devolved to (Eisner, 1988; Jenkins, 2005):

 PowerPoint
 Databases (e.g. DOORS and CORE)
 Word processors
 Spreadsheets
 Drawing tools (e.g. Visio)
 Etc.

The myth arose when systems engineers educated and practicing in the
HKMF Layer 2 US DOD systems engineering paradigm (DOD 5000.2-R, 2002)
lacking the tools of the 1950s and 1960s attempted to tackle HKMF Layer 3
problems. Complexity is in the eye of the beholder (Jackson and Keys, 1984);

160 Operational Analysis in the UK.

Chapter 26 Seven systems engineering myths

424

yes, it is a new class of problem to the HKMF Layer 2 systems engineers, and
no, current operations research tools and techniques that deal with “sys-
tems of systems” might need to be modified, but new tools do not need to
be developed; such tools do indeed exist and have existed for more than 50
years.

26.7 Myth 6: Changing requirements are a cause of project
failure so get the requirements up front

26.7.1 The myth

The myth arose from:

1. the failure to capture the entire problem/need and create the full
set of matching specifications for the solution system in the early
phases of systems engineering, and

2. overlooking the fact that requirements change continuously and
failure to manage that change is the cause of project failure.

There is thus confusion between the original uncaptured requirements
and those requirements that arise due to changes.

26.7.2 The reality

The reality is that requirements may be categorized by:

1. those that exist at the time the solution system is specified and
2. those that come into existence while the system is being realized.

Definitely elicit and elucidate the known requirements in the early stage
systems engineering activities. However, plan to use available tools and
techniques such as configuration management, stage gates and engineering
change processes to manage changes in requirements.

26.8 Myth 7: The single systems engineering process
This myth and corresponding reality was discussed in section 25.2 which

explains the conflicting and contradictory information in the various versions
of the systems engineering processes by viewing them as different unique
subsets of the meta- systems engineering process appropriate to their situa-
tion. Consequently, there is single systems engineering process, which is
different for every system development project and is really the SDLC con-
taining a number of iterations of the problem solving process.

Chapter 26 Seven systems engineering myths

425

26.9 Summary
This Chapter has stated that systems engineering is currently a discipline
characterized by debates based on subjective opinions, with participants
talking past each other, a lack of listening and a number of myths. The Chap-
ter discussed seven myths of systems engineering and showed the nature of
each myth and the reality, and explained how and why each myth arose.

26.10 Conclusion
This Chapter has documented some findings about the current state of sys-
tems engineering. These findings are based on research into the history and
practice of systems engineering. The findings of the research should provide
food for thought and assist educators to improve the teaching of systems
engineering.

Chapter 27 Seven principles

427

27Seven	principles	for	systems	
engineered	solution	systems

Systems engineering is presently demonstrating the characteristics of being
in the emerging stages of a discipline. A discipline generally matures when
an overriding axiom is presented and accepted by the majority of practition-
ers. This Chapter presents one such high level underpinning axiom for sys-
tems engineering that has the potential to unite the disparate camps within
systems engineering and enable the practice of systems engineering in all
application domains to achieve successes similar to those it achieved in the
NASA environment in the 1960’s and 1970’s. The axiom does this by focus-
ing on the solution system rather than on systems engineering.

27.1 The camps in systems engineering
Although systems engineering has been in existence since the 1940’s, it is
still demonstrating the characteristics of being in the emerging stage of a
discipline. The characteristics of a discipline in this stage include application
successes and failures as well as debates based on subjective opinions by
participants in different camps talking past each other and a general lack of
listening. The current somewhat overlapping camps in systems engineering
are described in Section 29.2161.

27.2 Towards unification
One reason for these debates and the camps is that systems engineers have
different opinions on the nature of systems engineering. This is because:

161 Section 29.2 contains an expanded version of the text originally published in the
paper upon which this Chapter is based, so the topic is discussed there to avoid du-
plication.

2011

Chapter 27 Seven principles

428

 of the devolution of systems engineering over the past 60 years from a
holistic paradigm to a stove-piped paradigm;

 systems engineering is so broad that systems engineers working on one
part of the “systems engineering process” face different problems and
perform different activities to those working in another part;

 they work in different application domains; and
 They often can’t see the big picture perspective of systems engineering

These different opinions of systems engineering can be represented by
the situation portrayed in the parable about the blind men feeling different
parts of an elephant and deducing different animals. The parable162 which is
told in verse in an Indian setting (Saxe, 1873) pages 77 and 78) as quoted by
(Yen, 2008) ends with the following stanzas.

“And so these men of Indostan
Disputed loud and long,
Each in his own opinion

Exceeding stiff and strong,
Though each was partly in the right,

And all were in the wrong!
MORAL.

So oft in theologic wars,
The disputants, I ween,

Rail on in utter ignorance
Of what each other mean,

And prate about an Elephant
Not one of them has seen!”

Systems engineering will not and cannot re-emerge as a unified disci-
pline until the majority of the practitioners understand the situation, realise
the big picture, and progress past these debates. From the temporal per-
spective, a discipline matures when one or more underpinning axioms have
been hypothesized, presented to, and eventually accepted by the communi-
ty. This acceptance occurs either when the axiom can represent the views of
all or nearly all of participants in the debates, or, when one view becomes
the dominant paradigm over the course of time. This Chapter presents one
such high level underpinning axiom for systems engineering; namely “seven
principles for systems engineered solution systems”. While the axiom ap-
plies to systems engineering, the principles apply to the finished product
irrespective of the systems engineering camp producing the solution system.

162 The parable is said to have originated in China sometime during the Han dynasty
(202 B.C. – 220 A.D.).

Chapter 27 Seven principles

429

27.3 Seven principles for systems engineered solution sys-
tems

This Chapter presents one such high level underpinning axiom for systems
engineering. While the axiom applies to systems engineering, the principles
apply to the finished product irrespective of the systems engineering camp
producing the solution system. This approach avoids presenting principles
specific to particular camps which may not be accepted by systems engi-
neers in the other camps.

Hitchins attributed the success of systems engineering in the NASA envi-
ronment in the 1960’s and 1970’s to a set of eight principles (Hitchins, 2007)
page 85). However, those principles applied in an environment where
NASA’s mission needs did not change very much during the SDLC for each
mission. Today’s systems on the other hand, tend to be developed and exist
in an environment where the needs change, sometimes even before the
solution system is delivered. This Chapter now introduces a set of principles
for today’s environment so that systems engineers working in different do-
mains using various tools, techniques and methodologies, can meet the ob-
jective of systems engineering by applying the following set of principles to
the solution system they are realizing:

1. There shall be a clear, singular objective or goal.
2. There shall be a CONOPS from start to finish of the mission describ-

ing the normal and contingency mission functions as well as the
normal and contingency support functions performed by the solu-
tion system that remedies the problem.

3. The solution system shall be designed to perform the complete set
of remedial mission and support functions for the operational life of
the system.

4. The solution system design may be partitioned into complemen-
tary, interacting subsystems.

5. Each subsystem is a system in its own right, and shall have its own
clear CONOPS, derived from, and compatible with, the CONOPS for
the whole.

6. Each subsystem may be developed independently and in parallel
with the other subsystems provided that fit, form, function and in-
terfaces are maintained throughout.

7. Upon successful integration of the subsystems, the whole solution
system shall be subject to appropriate tests and trials, real and sim-
ulated, that expose it to extremes of environment and hazards such
as might be experienced during the mission.

Consider each of these principles.

Chapter 27 Seven principles

430

27.3.1 There shall be a clear, singular objective or goal

Principle 1: There shall be a clear, singular objective or goal.
The task of the systems engineer shall have a clear singular objective

goal. In the concept definition stage of a systems acquisition, this goal may
be to identify the underlying problem or root cause of a situation, and to
conceive one or more potential solutions. In the later phases of the solution
SDLC163 the goal is generally to realize a solution system that remedies the
problem. For example, in the 1960’s the NASA goal was to put a man on the
Moon and return him safely to earth by the end of the decade. Similarly in
the LuZ SEGS-1 system (Section 18.9) the goal was to provide a system that
would convert solar energy to electrical power.

27.3.2 There shall be a clear CONOPS from start to finish of the mis-
sion …

Principle 2: There shall be a CONOPS from start to finish of the mission de-
scribing the normal and contingency mission functions as well as the normal
and contingency support functions performed by the solution system that
remedies the problem.

The CONOPS documents, or is a repository of, the information pertain-
ing to the normal and contingency mission and support164 performance of
the overall solution system. One way of grouping the complete set of func-
tions performed by any system is into the following classes:

 Mission: the functions which the system is designed to perform to pro-
vide a solution to the problem as and when required.

 Support: the functions the system needs to perform in order to be able
to perform the mission as and when required. Support functions can
further be grouped into (Hitchins, 2007) pages 128-129):

 Resource management functions – the functions that acquire,
store, distribute, convert and discard excess resources that are uti-
lized in performing the mission.

 Viability management functions – the functions that maintain and
contribute to the survival of the system in storage, standby and in
operation performing the mission.

163 The notion that the solution system is generally a technological system that needs
to be developed, and hence the name system development lifecycle, seems to be
DOD inspired. Essentially, there need not be any (technological) development; in-
stead, solution systems can be synthesized by bringing together existing systems to
create a new unitary whole.
164 The repeated use of “normal and contingency mission and support” is to empha-
size the holistic approach.

Chapter 27 Seven principles

431

Part of the CONOPS considers the consequences of failures of parts of
the system to perform their mission and support functions and the contin-
gency functions to be invoked in the event of these failures. The contingen-
cy functions may be in the process and consist of activities that will attempt
to prevent the failure, or may be in the solution system in the form of viabil-
ity functions.

The CONOPS is the foundation document165 for both the solution system
and the rest of the system realization activities since the remaining work in
the SDLC realizes the solution system by converting the mission and support
functions described in the CONOPS into a real system. Application of this
principle leads to a holistic system development approach ensuring that all
pertinent mission and support functions, such as operational availability,
logistics, human operations, threat neutralizations, etc. are included in the
system up-front in an integrated holistic manner and not as a bolt-on after
the fact. A clear vision of the solution system anticipates, and consequently
prevents, subsequent activities that try to clarify the original customer’s
problem represented by a set of poor requirements. The consequences of
not having a CONOPS are shown in Figure 27-1166. I found this drawing in
1970 and it was old then. It has evolved somewhat in the intervening 40
years but the message it contains has not changed.

As an example of the benefits of a CONOPS, the (top level) CONOPS for
the command and control system in Luz SEGS-1 (Section 18.9) was simply to
generate electrical power using solar energy as the fuel. This mission was to
be accomplished by deploying a field of parabolic trough reflector mirrors
each morning, following the movement of the sun during the day to keep
the mirrors focused on the sun and then stowing the mirrors in the evening
when the sun set below the horizon. The support functions were to keep
the mirrors clean, and to repair and maintain the elements of the system.

The CONOPS can also serve as a model of the solution and be incorpo-
rated in a simulation to allow various stakeholders to gain a better under-
standing of the problem space and determine if, and how well, the concep-
tual system being modelled could remedy the problem should that concep-
tual solution system be realized.

A CONOPS also facilitates elucidating requirements since the stakehold-
ers, by agreeing on the CONOPS agree on the mission and support functions
that the solution system will perform. The benefit of a shared stakeholder
vision is discussed with reference to the Multiple-Satellite Operations Con-

165 The word ‘document’ is used herein to represent information, not a necessarily a
paper document.
166 While it is often used to depict the “systems engineering process”, it really shows
a lack of communications or common vision of what the customer wants by the
stakeholders.

Chapter 27 Seven principles

432

trol Center (MSOCC) replacement switch case study in eliciting and elucidat-
ing requirements (Kasser and Mirchandani, 2005). The CONOPS can even
minimize the number of requirements needed for certain types of systems
such as LuZ’s SEGS-1 because the CONOPS communicates the functionality
and performance that must be developed and proven.

Figure 27-1 The consequences of not having a CONOPS

27.3.3 The solution system design …

Principle 3: The solution system shall be designed to perform the complete
set of remedial mission and support functions for the operational life of the
system.

The application of this principle produces a solution system that per-
forms the mission and support functions described in the CONOPS over the
complete lifecycle of the solution system. The solution system does not
have to be technological or even a new acquisition. The solution system lies
somewhere along a continuum that stretches from ‘fully automatic techno-
logical’ to ‘manual with no technology’; and may be a modification of an
existing system, a change to an existing process, tactics, doctrine, policy, or
training or some combination. However, when applied to technological so-
lution systems, this principle helps to ensure that the effects of component
obsolescence, Diminishing Manufacturing Sources and Material Shortages
(DMSMS), logistics, reliability, maintainability, the human element and other
pertinent factors currently considered somewhat independently are consid-
ered interdependently in a holistic interdisciplinary manner from concep-
tion. Further, if the solution system is designed to perform in a hazardous or

Chapter 27 Seven principles

433

threatening context, then the solution system shall incorporate support
functions to counter threats and to manage risks.

27.3.3.1 Coping with change is a design criterion

This principle takes into account changes in/to the need/problem at any
point in the SDLC. For example, in NASA’s Apollo program, the need (and
hence the requirements) did not change during the SDLC, and the opera-
tional life of each iteration of the manned element of the system was short;
measurable in days. Each Apollo Lunar Surface Experiments Package
(ALSEP)167 however had a much longer life span.

Other early successful projects such as the transcontinental US televi-
sion microwave relay system (Hall, 1962) were also not subject to changing
needs. However, today’s solution system creation and realization process
must be able to cope with changes in the needs before the solution system is
delivered, and the solution system itself needs be realized in such a manner
that upgrades reflecting changing needs during its operational phase can be
incorporated without major perturbations.

27.3.3.2 Cost is not an initial design criterion

According to this principle, the cost-effectiveness of the solution system is
not a design criterion at least as far as the prototype or initial version is con-
cerned. Once the prototype is shown to meet the needs, then costs may
become an issue if the prototype is not affordable. Henry Ford wrote “our
policy is to reduce the price, extend the operations and improve the article.
You will notice that the reduction of price comes first. We have never consid-
ered costs as fixed. Therefore we first reduce the price to a point where we
believe more sales will result. Then we go ahead and try to make the price.
We do not bother about the costs. The new price forces the costs down. The
more usual way is to take the costs and then determine the price, and alt-
hough that method may be scientific in the narrow sense, it is not scientific in
the broad sense because what earthly use is it to know the cost if it tells you
that you cannot manufacture at a price at which the article can be sold?”
(Ford and Crowther, 1922) page 146). It is a question of perspective and
asking the right question. The usual non-holistic thinking question was
“what does it cost to produce X?” From the Continuum perspective, the al-
ternative (out-of-the-box) question was “how can X be produced for $Y?”

NASA’s Apollo programme was more concerned with doing the job
(meeting the goal of placing a man on the moon by the end of the 1960’s)
rather than doing it efficiently – money was not an issue in the initial design

167 A set of scientific instruments deployed at the landing site of Apollo 12 to 17 de-
signed to operate for a year. Each ALSEP contained the same central station and a
slightly different set of scientific instruments.

Chapter 27 Seven principles

434

phase. When the systems engineer designs each of the solution system op-
tions, cost and schedule must not be an issue. Cost and schedule considera-
tions may be used as selection criteria for choosing the desired solution sys-
tem option after the solution system options have been designed. In addi-
tion, systems engineers should be involved in any adjustments to the scope
of the solution system realization project to fit the constraints of cost and
schedule.

27.3.4 The solution system design partitioning …

Principle 4: The solution system design may be partitioned into complemen-
tary, interacting subsystems.

The solution that remedies the problem is the sum of the mission and
support functions performed by the solution system and the functions per-
formed in the realization process (Hall, 1989). Consider:

 Partitioning the product or solution system.
 Partitioning the production process.

27.3.4.1 Partitioning the product or solution system

The systems engineers design the solution system so that the desired func-
tionality emerges from the complete design. For example, the performance
of NASA’s Apollo Moon Mission was emergent, coming as it did from the
cooperation and coordination of the Saturn V launcher, the command mod-
ule, the mission crew, the lunar excursion module, the telecommunications
subsystem, mission control subsystem, etc. Performance is emergent be-
cause these various subsystems of the whole are of dissimilar nature, yet
cooperate and coordinate their different functions and actions. So, you can-
not point to any one subsystem and say – ‘performance was down to that
one’. All parts contributed, all cooperated and coordinated their actions.

27.3.4.2 Partitioning the production process

The systems engineers also architect the activities that will constitute the
realization process as interdependent streams of work between milestones
(Chapter 19.)

27.3.5 Each subsystem is a system in its own right …

Principle 5: Each subsystem is a system in its own right, and shall have its
own clear CONOPS, derived from, and compatible with, the CONOPS for the
whole.

This principle reflects the observation that systems exist within contain-
ing systems and incorporates the structural hierarchical perspective. The
principle has often been stated as “one person’s system is another person’s
subsystem”. Hierarchies are fundamental to nature.

Chapter 27 Seven principles

435

As an example consider an allied naval convoy crossing the North Atlan-
tic Ocean in 1942. The convoy is a system. Each ship in the convoy can be
considered as both a subsystem of the convoy, or as a system168. There was
a CONOPS for the convoy. There were separate CONOPS for the naval escort
ships and the merchant vessels describing the actions and interactions of
these subsystems of the convoy in various scenarios.

27.3.6 Each subsystem may be developed independently and in par-
allel …

Principle 6: Each subsystem may be developed independently and in parallel
with the other subsystems provided that fit, form, function and interfaces are
maintained throughout.

Each subsystem, being a system, needs its own systems engineers who
conceive, design and develop their [sub]system as an interacting part of the
containing system. These [sub]system systems engineers face in two direc-
tions – upwards and outwards into the containing system, to ensure on-
going compatibility with the containing system and its CONOPS, including all
of the other interacting subsystems at the same level in the hierarchy; and
downwards, into the intra-acting sub-subsystems within their own
[sub]system. The downward task of developing the subsystems (function)
can be considered as engineering when the focus is on the [sub]system as an
independent entity.

During the realization phases of the SDLC (activities that take place in
columns C … F of the HKMF) when the subsystems are being developed in
parallel, the systems engineering activities are those that focus on the sub-
system as a part of the complete system and ensure that fit, form and inter-
faces are maintained. If the SDLC takes a long time, the effect of changes in
the need on the subsystem realization has to be taken into account. Experi-
ence has shown that subsystem designs and development may be subject to
“creep”. Consequently, it is necessary to have budgets for the whole sys-
tem, as well as budgets for each of the subsystems — for instance the
weight budget was important to Apollo, as was a failure rate budget. It
would not have done for the failure rate for one subsystem – say the capsule
– to go off the scale! Technical budgets have become known as ‘Technical
Performance Measures’. This is what is meant, in part, by conceiving, de-

168 Alternatively, the naval ships could be one subsystem and the merchant marine
ships a second subsystem of the convoy. Each ship is then a subsystem within the
naval or civilian subsystem of the convoy. If there are ships from the navies of more
than one allied country in the convoy, then the ships of each country could constitute
a subsystem within the naval subsystem..

Chapter 27 Seven principles

436

signing and developing the subsystem independently but within the context
of the whole and the other interacting subsystems.

27.3.7 Upon successful integration of the subsystems ...

Principle 7: Upon successful integration of the subsystems, the whole solution
system shall be subject to appropriate tests and trials, real and simulated,
that expose it to extremes of environment and hazards such as might be ex-
perienced during the mission.

This principle minimizes situations in which solution systems are deliv-
ered that are not fit for purpose and do not provide a solution in the intend-
ed environment.

The consequences of not implementing this principle can be seen in the
increasing stovepiping of the processes in the SDLC and expansion of the
various disciplines. For example, consider the expansion of T&E discussed in
Chapter 9. The questions raised by the T&E personnel should be addressed
when developing the CONOPS.

27.4 Discussion
Poor systems engineering has been blamed for system acquisition failures169

according to many sources including (Wynne, 2004). An objective view
might suggest that budget and time overruns smack of either poor estimat-
ing of cost and schedules or understating the real estimates for reasons that
appeared valid at the time. However, in all fairness, poor early stage sys-
tems engineering does seem to have been a contributor to some of those
failures resulting from producing solutions systems that do not remedy the
need when deployed. Attempts to mitigate the effects of poor early stage
systems engineering in the early stages of the system have resulted in sys-
tem development becoming increasingly technologically focused, excessively
complicated and stove-piped into independent streams of activities includ-
ing:
 Systems Engineering
 Project Management
 Lifecycle Costing or Total Ownership Cost
 Performance Based Logistics
 Integrated Logistics Support
 Maintenance Management
 Supply Chain Management
 Technical Training Management

169 Defined herein as cost and schedule overruns, cancellations and delivered systems
that are not fit for purpose.

Chapter 27 Seven principles

437

 Technical Data Management
 Configuration Management
 Risk Management
 Independent Verification and Validation
 Human Systems Integration

These are but some examples of the independent streams of activities in
the various specialties in the SDLC. Not only is this stove-piping against the
holistic concept of systems engineering, stove-piping produces overlapping
activities, confusion, and unnecessary expense and also provides a breeding
ground for turf wars in organizations. The documentation overhead is in-
creasingly becoming expensive and documents that should be interdepend-
ent are independent being produced because of legislation rather than as a
result of actual need. Today’s DOD systems engineering paradigm has added
so many bolt-ons to compensate for having removed the front end of sys-
tems engineering that it has become expensive and unworkable (Costello,
1988). Reversion to the original holistic weltanschauung (world view or par-
adigm) is long overdue since in the 20 years since the Costello Report was
published, the situation has worsened.

27.5 Summary
Systems engineering is presently demonstrating the characteristics of being
in the emerging stages of a discipline. A discipline generally matures when
an overriding axiom is presented and accepted by the majority of practition-
ers. This Chapter presented one such underpinning axiom for systems engi-
neering. The principles within the axiom apply to the solution system, pro-
duction of which is the common goal of all the camps within systems engi-
neering. As a consequence, the axiom has the potential to unite the dispar-
ate camps within systems engineering by allowing them to agree on the
principles applying to the solution system which will then enable the practice
of systems engineering to repeat the successes it achieved in the NASA envi-
ronment in the 1960’s and 1970’s in all current and future application do-
mains.

27.6 Conclusion
The principles presented in this Chapter apply to the solution system being
systems engineered rather than to systems engineering. As such the axiom
has the potential to unite the disparate camps within systems engineering by
allowing them to agree on the principles. Applying these principles to the
solution system will then enable the practice of systems engineering to re-
peat the successes it achieved in the NASA environment in the 1960’s and
1970’s in all current and future application domains.

Chapter 28 Getting the right requirements right

439

28Getting	the	right	requirements	
right

Research has shown that there is an on-going consensus that:

1. good requirements are critical to the success of a project,
2. the current requirements paradigm produces poorly written re-

quirements and
3. ways of producing better requirements have been around for more

than 20 years.

So, instead of producing yet another opinion on how to write better re-
quirements, this Chapter begins by posing the following question:

why do systems and software engineers continue to produce poor re-
quirements when ways to write good requirements have been document-
ed in conference papers and textbooks?

The Chapter then documents findings from research into the problem
via the holistic thinking perspectives and hypothesises that there are two
requirements paradigms; the original A paradigm and the current B para-
digm which is inherently flawed. The Chapter then dissolves the problem of
poor requirements by applying technology to reduce the need for most of
the requirements written today.

28.1 The perennial problem of poor requirements
Requirements drive the work in the SDLC as shown in Figure 17-2. Research
has shown that there is an on-going consensus that (Kasser and Schermer-
horn, 1994a; Jacobs, 1999; Carson, 2001; Hooks, 1994; DOD, 2011; Gold-
smith, 2004; Wheatcraft, 2011; Lee and Park, 2004; Jorgensen, 1998):

1. good (well-written) requirements are critical to the success of a pro-
ject,

2. there is no metric for the “goodness” of a requirement,

2012

Chapter 28 Getting the right requirements right

440

3. the current requirements paradigm produces poorly written re-
quirements and

4. ways of producing better requirements have been around for more
than 20 years.

So, instead of producing yet another opinion on how to write better re-
quirements, this Chapter begins by posing the following question: why do
systems and software engineers continue to produce poor requirements
when ways to write good requirements have been documented in confer-
ence papers and text books? (Jorgensen, 1998; Lee and Park, 2004; Alexan-
der and Stevens, 2002)

28.2 The perspectives perimeter
This section on the HTPs (Kasser, 2013) was grafted into this Chapter since
the papers describing the systems and holistic thinking perspectives (HTP)
alluded to in the preface to the second edition were not included in this vol-
ume. This section introduces a set of viewpoints on the perspectives perim-
eter which can be used to provide anchor points for thinking and communi-
cating in a systemic and systematic manner. These viewpoints go beyond
combining analysis (internal views) and systems thinking (external views) by
adding quantitative and progressive (temporal, generic and continuum)
viewpoints. The nine HTP anchor points shown in Figure 28-1 are:

Figure 28-1 Holistic thinking perspectives (structural view)

 External perspectives: The External perspectives are:

1. Big Picture: the context for the system.
2. Operational: what the system does.

 Internal perspectives: The Internal perspectives are:

Chapter 28 Getting the right requirements right

441

3. Functional: what the system does and how it does it.
4. Structural: how it is constructed and organised.

 Progressive perspectives: The Functional and Structural perspectives
provide internal views; the Big Picture and Operational perspective pro-
vide external views. The progressive perspectives are where holistic
thinking begins to go beyond analysis and systems thinking and are or-
thogonal to the internal and external perspectives as shown in Figure
28-2. The progressive perspectives are:

Figure 28-2 Holistic thinking perspectives

5. Generic: where the system is perceived as an instance of a class of
similar systems.

6. Continuum: where the system is perceived as but one of many al-
ternatives.

7. Temporal: which considers the past, present and future of the sys-
tem.

 Other perspectives: The other perspectives are:

8. Quantitative: the numeric and other quantitative information asso-
ciated with the system.

9. Scientific: the hypothesis or guess about the issues

28.3 Situational analysis
This section analyses the situation from the HTPs to develop an answer to
the question “why do systems and software engineers continue to produce
poor requirements when ways to write good requirements have been doc-
umented in conference papers and textbooks?” posed above.

Chapter 28 Getting the right requirements right

442

28.3.1 Big picture perspective

There seem to be a number of reasons for systems and software engineers
to continue to produce poor requirements when ways to write good re-
quirements have been documented in conference papers and text books,
including (in no particular order):
 Lack of time to write the requirements due to schedule constraints,

which results in poorly drafted and incomplete requirements.
 Failure of the stakeholders to articulate the requirements, which results

in incomplete and sometimes results in incorrect requirements.
 Lack of training for writing good requirements sometimes due to budget

issues, which results in poorly written requirements.
 Fundamental lack of understanding of the need for, and the purpose

served by, requirements, by management, which results in lack of suffi-
cient time for the requirements elicitation and elucidation process.

 Lack of implementation and solution domain knowledge in the systems
and software engineers eliciting and elucidating the requirements,
which tends to result in incomplete and sometimes unachievable re-
quirements.

 Lack of functionality in commercial requirements tools that can call at-
tention to requirements that are poorly written.

These reasons can be aggregated into two issues:

1. Production of poorly written requirements.
2. Lack of ways of ensuring completeness of the requirements.

28.3.2 Operational perspective

Requirements are written in the context of the system acquisition and de-
sign process which takes place in the front-end of the SDLC170. Since various
depictions of this process exist (Chapter 25), this Chapter uses the represen-
tation of the system design process shown in Figure 28-3171 (Bahill and Dean,
1997) as a typical example. This version of the system design process begins
with a customer request, which is then analysed, and a problem statement
developed. Requirements, behavioural scenarios and models are then pro-
duced in parallel to develop a number of conceptual solution systems. After
a feasible conceptual solution has been selected, the process to realize the

170 The notion that the solution system is generally a technological system that needs
to be developed, and hence the name system development lifecycle, seems to be US
Department of Defense inspired. Essentially, there need not be any (technological)
development; instead, solution systems can be synthesized by bringing together ex-
isting systems to create a new unitary whole.
171 The figure seems to use the terms “solution” and design” interchangeably.

Chapter 28 Getting the right requirements right

443

solution system (for the following phases of the SDLC) is designed (Chapter
19) and the SDLC continues.

Figure 28-3 System design process (Bahill and Dean, 1997)

28.3.2.1 Overlapping streams of work

One of the consequences of the focus on the functional and performance
aspects of the solution system and the neglect of the non-functional attrib-
utes has been an increase in the complexity and cost of the acquisition pro-
cess. This is due partly to the growth of the activities performed in T&E, In-
tegrated Logistics Support and Configuration Management to ensure that
the systems acquired meet the needs of the user when fielded (irrespective
of quality and completeness of the requirements). These activities now form
parallel overlapping streams of work within the SDLC, generate nugatory
work producing legally required documents that make little if any contribu-
tion to the success of the project while escalating the costs. Consider the
following three examples of the overlaps:
 SEMP and TEMP.
 Logistics Support Analysis (LSA).
 Configuration Management.

28.3.2.1.1 SEMP and TEMP

The contents of a TEMP overlap the contents of a SEMP (Florida, 2006).

28.3.2.1.2 Logistics Support Analysis (LSA)

Logistics Support Analysis (LSA) is defined as an activity within Integrated
Logistics Support which generates a Logistics Support Analysis Record. The
activity is defined as “the iterative process of identifying support require-
ments for a new system, especially in the early stages of system design”. The
main goals of LSA are to ensure that the system will perform as intended and
to influence the design for supportability and affordability. LSA, performed
as integral part of system design (up front):
 Produces supportability requirements as an integral part of system re-

quirements and design.
 Defines support requirements that are optimally related to the design

and to each other.

Chapter 28 Getting the right requirements right

444

 Defines the required support during the operation phase of the system.

28.3.2.1.3 Configuration Management

Configuration Management is defined as “a field of management that focus-
es on establishing and maintaining consistency of a system's or product's
performance and its functional and physical attributes with its requirements,
design, and operational information throughout its life” (MIL-HDBK-61A,
2001). There are two types of configuration audits within configuration
management:
 Functional configuration audits– which ensure172 that functional and

performance attributes of a configuration item are achieved, and
 Physical configuration audits - which ensure that a configuration item is

installed in accordance with the requirements of its detailed design
documentation.

Configuration audits can occur either at delivery or at the moment of ef-
fecting a change. These audits are commonly known as verification and vali-
dation or testing in the systems engineering community.

28.3.3 Functional perspective

The functions or activities performed to discover requirements within Figure
28-3 are elaborated in Figure 28-4. This process is complicated containing
activities to:

1. determine if requirements are feasible,
2. identify risks associated with requirements, and
3. detect correct and contradicting requirements in the step that asks

why each requirement is needed.

However, the process cannot determine if the requirements are com-
plete. As a result there is no way to show that the requirements express a
complete solution that will meet the need until the solution system is actual-
ly fielded and put into service at the end of the SDLC, sometimes after many
years and the expenditure of lots of money. As mentioned above, variations
of this process exist. For example Jorgensen provides a variation on the pro-
cess calling out the need for an evaluation of the operations concepts of a
system before writing requirements (Jorgensen, 1998).

The front end of the Australian SDLC is different to the example shown
in Figure 28-3. There, an OCD is created and the functional and performance
requirements for the system are based on the OCD (Gabb, et al., 2001).

172 Ensure does not necessarily mean do, it also means making sure something is
done, such as in Quality Assurance.

Chapter 28 Getting the right requirements right

445

Gabb stated that an OCD may include identification and discussion of the
following:

Figure 28-4 The requirements discovery process (Bahill and Dean,
1997)

 Why the system is needed and an overview of the system itself.
 The full system lifecycle from deployment through disposal.
 Different aspects of system use including operations, maintenance, sup-

port and disposal.
 The different classes of user, including operators, maintainers, support-

ers, and their skills and limitations.
 Other important stakeholders in the system.
 The environments in which the system is used and supported.
 The boundaries of the system and its interfaces and relationships with

other systems and its environment.
 When the system will be used, and under what circumstances.
 How and how well the needed capability is currently being met (typically

by existing systems).
 How the system will be used, including operations, maintenance and

support.

The OCD is presented at an Operations Concept Review (OCR) and ana-
lysed in the subsequent phase of the SDLC and then used to create the func-
tional and performance requirement documents.

28.3.4 Temporal perspective

From this perspective, one can examine how the need for requirements

Chapter 28 Getting the right requirements right

446

evolved and where requirements are produced and used in system acquisi-
tion and in the SDLC.

Research173 shows that the early systems engineers of the 1950’s and
1960’s tended to focus on identifying the problem (Wymore, 1993) and find-
ing an optimal solution (Hall, 1962; Goode and Machol, 1959). These early
systems engineers were Types III, IV, and V, (Kasser, et al., 2009) while the
systems engineers who came later tended to focus on processes (Type II)’s.
Back in the “good old days” of systems engineering, Type III, IV and V sys-
tems engineers remedied the problem in the early stage systems engineer-
ing activities addressing the conceptual solution. They then produced the
matched set of specifications for the implementation or realization of the
solution, and moved on to the next contract, leaving the Type II’s to continue
realizing the solution. There then came a time when there was a lack of new
projects and so many of the Type III, IV and V’s were laid off and lost to the
discipline. When the need for systems engineers picked up again, in general,
only the Type II systems engineers were left and they took over systems en-
gineering. They had seen a successful process for developing systems fol-
lowing the production of the matched set of specifications and so their focus
was on the post-requirements phases of the SDLC. They wrote the stand-
ards used in systems engineering (MIL-STD-499, 1969; MIL-STD-499A, 1974;
EIA 632, 1994; IEEE 1220, 1998) for other Type II systems engineers to fol-
low. As a consequence, the critical early stage engineering activities ad-
dressing the problem and conceptual solution were left out of mainstream
Type II systems engineering (Bruno and Mar, 1997; Fisher, 1996). The
Standards in turn became the foundation for educating systems engineers.

28.3.5 Quantitative perspective

While there is a consensus that requirements are critical, and that require-
ments suffer from several types of defects (see structural perspective), there
is no widely accepted metric for the goodness of requirements (Kasser, et
al., 2006) nor does there seem to be a widely accepted baseline definition of
a requirement. For example the IEEE definition of a requirement is (IEEE
610, 1990):

“(1) A condition or capability needed by a user to solve a problem or
achieve an objective.

(2) A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or other
formally imposed documents.

A documented representation of a condition or capability as in (1) or
(2).”

173 The evolution of the role of systems engieering was discussed in section 23.1.

Chapter 28 Getting the right requirements right

447

Yet variations of the definition continue to appear in the literature, in-
cluding:

 Something that is wanted or needed, called for or demanded as being
essential (Mason, et al., 1999).

 A statement which translates (or expresses) a need or constraints (tech-
nical, costs, times ...). (Fanmuy, 2004).

 Something obligatory or capabilities the system must satisfy (Powell and
Buede, 2006).

 Kossmann et al. cite a number of definitions in the literature and also
provide a useful overview of the state-of-the-art of requirements engi-
neering based on a wide collection of publications from previous years
(Kossmann, et al., 2007).

28.3.6 Structural perspective

A text-mode requirement should just be a simple sentence. Yet there are
problems in the way requirement sentences are structured (Scott, et al.,
2006). As discussed above, contemporary requirements management prac-
tice irrespective of the process used to generate the requirements is far
from ideal, producing:
 Vague and unverifiable requirements – due to poor phrasing of the

written text.
 Incompletely articulated requirements – due to a poor requirements

elicitation process.
 Incomplete requirements – due to various factors including domain

inexperience, and the lack of expertise in eliciting and writing require-
ments by technical staff.

 Poor management of the effect of changing user needs during the time
that the system is under construction – due to lack of the understand-
ing of the need for change management, and use of appropriate tools to
do the function in an effective manner.

In conjunction with improving the writing of requirements, there also
has been recognition that a requirement is more than just the imperative
statement having additional properties (e.g. priority and traceability)
(Alexander and Stevens, 2002; Hull, et al., 2002). The IEEE Computer Society
Computing Curriculum - Software Engineering --- Public Draft 1 --- (July 17,
2003) Software Engineering Education Knowledge Software expands on the
earlier IEEE 610 definition of a requirement as follows “Requirements identi-
fy the purpose of a system and the contexts in which it will be used. Re-
quirements act as the bridge between the real world needs of users, custom-
ers and other stakeholders affected by the system and the capabilities and
opportunities afforded by software and computing technologies. The con-
struction of requirements includes an analysis of the feasibility of the desired

Chapter 28 Getting the right requirements right

448

system, elicitation and analysis of stakeholders’ needs, the creation of a pre-
cise description of what the system should and should not do along with any
constraints on its operation and implementation, and the validation of this
description or specification by the stakeholders. These requirements must
then be managed to consistently evolve with the resulting system during its
lifetime”.

However, in practice, there is difficulty in adding these additional prop-
erties to the traditional requirement document or database and then man-
aging them. This is because the current systems and software development
paradigm generally divides the work in a project into three independent
streams as shown in Figure 2-2. Thus requirements engineering tools con-
tain information related to the Development and Test streams (the require-
ments) while the additional properties tend to be separated in several dif-
ferent tools, (e.g. Requirements Management, Project Management, Work
Breakdown Structures, Configuration Control, and Cost Estimation, etc.).

28.3.7 Generic perspective

Text mode requirements are but one way to communicate information.
Other ways of communicating all or part of the same information include
models, simulations, photographs, schematics, drawings, and prototypes.
Fanmuy clarifies the definition of a requirement statement by adding “this
statement is written in a language which can take the form of a natural lan-
guage or a mathematical, arithmetic, geometrical or graphical expression”
(Fanmuy, 2004). Timing and state diagrams are often used in Requirements
Documents. Thus the concept of stating user needs (under certain circum-
stances) via diagrams is already in use in systems engineering (Kasser,
2002b). Thus, from this perspective, requirements are but one of a number
of communications tools. The focus should be on user needs, not on re-
quirements. Van Gaasbeek and Martin quoted Dahlberg as stating, “we
don't perform system engineering to get requirements” and, “we perform
system engineering to get systems that meet specific needs and expecta-
tions” (Van Gaasbeek and Martin, 2001).

28.3.8 Continuum perspective

This perspective also looks at ranges and ambiguities. For example:
 The information in a requirements document can be looked at as both a

solution and a problem. The matched set of specifications documents
are a conceptual solution system that should remedy the problem.
Thus, they document a solution as far as the customer is concerned but
at the same time, they also document the problem faced by the design-
ers who have to design the solution system.

 The word ‘requirement’ may have different meanings in different phas-
es of the acquisition lifecycle. In the early stage systems engineering ac-

Chapter 28 Getting the right requirements right

449

tivities in column A of the HKMF, ‘requirement’ and ‘need’ may also be
used interchangeably, but have slightly different meanings in the
worldviews of the customer and contractor. These differences in mean-
ings show up in the IEEE definition of a requirement (IEEE 610, 1990).

28.3.9 Scientific perspective

There seem to be two requirements engineering paradigms.

A. The first paradigm begins with the systems engineering activi-
ties performed in column A of the HKMF shown in Figure 21-3
discussed in Section 21.9.

B. The second paradigm skips the column A activities and begins
in column B.

28.4 The two requirements paradigms
Consider the two paradigms.

28.4.1 The A paradigm

The A paradigm beings with the systems engineering activities performed in
column A in the HKMF. Research into the systems engineering literature
found that successful projects such as the NASA Apollo program (Hitchins,
2007) and the LuZ SEGS-1 solar project (Chapter 22) were characterised by a
common vision of the purpose and performance of the solution systems
among the customers, users and developers; namely a paradigm that began
in column A of the HKMF. Moreover, the common vision related to both the
mission and support functions performed by the solution system. The re-
search finding was supported outside the systems engineering literature by
similar findings in the process improvement and Quality literature (Deming,
1993; Dolan, 2003). In addition, note that Business Process Reengineering
creates and disseminates/communicates a ‘to-be’ model of the operation of
the conceptual reengineered organisation before embarking on the change
process.

Requirements are developed as an intermediate work product in the
SDLC to provide formal communication between the stakeholders. Many
informal situations do not need requirements when the vision is present.
During the Luz system development there was a need for a position sensor
to report on the angle between the focus of the mirror and the horizon
(Chapter 22). Alternative approaches to identifying the position of the mir-
ror examined were (a) a pulse counting based sensor, (b) an analogue sensor
based on a potentiometer and (c) an absolute position optical shaft encoder
sensor. The optical shaft encoder option was selected after due considera-
tion. A search through the component catalogues quickly identified a COTS

Chapter 28 Getting the right requirements right

450

Gray code174 absolute position rotary encoder with an eight-bit parallel tran-
sistor-transistor-logic (TTL) interface. There was no need to write any re-
quirements for the position sensor interface in this informal situation. The
team had a concept of what the system was supposed to do; they had the
(electronics) domain knowledge necessary to understand Gray code and the
specifications on a TTL parallel interface, and got on with the interface de-
sign.

Since the A paradigm is characterized by a common vision of the pur-
pose of the mission and support functions of solution systems among the
customers, users and developers, the quality of the requirements tends to
have little if any impact on the functionality of the solution system.

28.4.2 The B paradigm

Many systems and software engineers have been educated to consider the
systems engineering activities in column B of the HKMF as the first phase of
the systems engineering process. For example,
 requirements are one of the inputs to the ‘systems engineering process’

(Martin, 1997) page 95), (Eisner, 1997) page 9), (Wasson, 2006) page 60)
and (DOD 5000.2-R, 2002), pages 83-84);

 in one postgraduate class at University of Maryland University College
the instructor stated that systems engineering began for him when he
received a requirements specification (Todaro, 1988).

While DOD 5000 does call out the ‘analysis of possible alternatives’ sub-
set of activities performed in Phase A.2 of the HKMF (DOD 5000.2-R, 2002)
pages 73-74), those activities are called out as part of the separate seeming-
ly independent CAIV process. CAIV is a way of complicating just a part of the
concept of designing budget tolerant systems using the cataract approach
(Section 13) and takes place before the DOD 5000.2-R ‘systems engineering
process’ begins.

28.5 Discussion
The B paradigm is inherently flawed. This is because even if systems and
software engineers working in a paradigm that begins in HKMF column B
could write perfectly good requirements and follow a process such as the
one shown in Figure 28-5 (Guo, 2010), they still cannot determine if the re-
quirements and associated information are correct and complete because

174 A binary code, where two successive values differ in only one bit, originally de-
signed to prevent spurious outputs during transitions from one state to another in
electromechanical switches.

Chapter 28 Getting the right requirements right

451

there is no reference for comparison to test for the completeness. Conse-
quently, efforts expended on producing better requirements have not, and
will not, alleviate the situation. The situation cannot be alleviated because
the situation is akin to participating in Deming’s red bead experiment, which
demonstrates that errors caused by workers operating in a process are
caused by the system rather than the fault of the workers (Deming, 1993)
page 158). Recognition that the B requirements paradigm is inherently
flawed is not a new observation. For example:

Figure 28-5 One example of the B paradigm (Guo, 2010)

 Sutcliffe et al. proposed reducing human error in producing require-
ments by analysing requirements using an approach of creating scenari-
os as threads of behaviour through a use case, and adopting an object-
oriented approach (Sutcliffe, et al., 1999); namely they proposed a re-
turn to the A paradigm.

 Daniels et al. point out that standalone requirements make it difficult
for people to understand the context and dependencies among the re-
quirements, especially for large systems and suggest using use cases to
define scenarios (Daniels, et al., 2005).

 One of the two underlying concepts of Model Based Systems Engineer-
ing (MBSE) is to develop a model of the system to allow various stake-
holders to gain a better understanding of how well the conceptual sys-
tem being modelled could remedy the problem, before starting to write
the requirements. MBSE with its roots in the process camp of systems
engineering and the B paradigm has discovered the CONOPS and is try-
ing to return to the A paradigm.

28.6 Upgrading the A paradigm for the 21st century
In the second half of the 20th century the CONOPS, requirements specifica-
tions and associated information were stored in the form of separate docu-

Chapter 28 Getting the right requirements right

452

ments containing text and graphics. In the latter years of the 20th century,
information technology provided electronic storage capability in the form of
databases. In the 21st century, the CONOPS and requirements can be linked
via technology. Technology allows a multi-media approach to be used to
communicate the vision of the solution system. This concept was described
and prototyped as an Operations Concept Harbinger (OCH) which may be
thought of as a multimedia OCD that also contains measures of effectiveness
for each operational scenario (Kasser, et al., 2002). The OCH architecture
consists of an underlying database and agents that act on the contents of
the database to describe relationships and performance in various scenarios
in the language of the viewer. Therefore, some designers could see the solu-
tion system execution expressed in UML, SySML, or IDEF0, and other stake-
holders could see the solution as PowerPoint slides, videos, sound bites, etc.
A prototype OCH was constructed in the SEEC at UniSA and used in a suc-
cessful Force Level Systems Engineering application (Kasser, et al., 2002).

28.6.1 Relating the CONOPS to Requirements

The use of use cases within a CONOPS in an object-oriented approach de-
scribing ‘properties of’, and ‘services’ (functions) provided by, components,
can often provide the same representation of user needs as that of “re-
quirements” if each property consists of an attribute and a value (Section
16.7). Other non-functional attributes such as colour and weight associated
with a component can also be shown in the property viewer. The object-
oriented approach also provides for inheritance of attributes of various clas-
ses of components which helps to maximise the completeness of the infor-
mation in the CONOPS. The relationship between the undesirable situation,
CONOPS, functions and requirements in the A paradigm can be expressed as
shown in Figure 28-6.

Figure 28-6 CONOPS, functions and requirements

The problem solving process in the early stages of systems engineering
performed in column A of the HKMF are shown in Figure 28-7 (Hitchins,

Chapter 28 Getting the right requirements right

453

2007): Figure 6.2)175. The solution options may be constructed in the form of
an OCH or an information-technology based CONOPS often called a model
rather than in a document-based format.

Figure 28-7 Hitchins problem solving process in the early stages of the SDLC

So, if the model or an object-oriented CONOPS (OOCONOPS) can repre-
sent the user’s needs in a manner verifiable by all stakeholders, there is no
need for writing many of the requirements that seem to be needed in the B
paradigm. The process shown in Figure 28-4 can be simplified. For example,
there is no need to question the need for requirements since the
OOCONOPS contains that information. In fact, since the OOCONOPS can
communicate the vision more thoroughly than do text mode requirements,
the number of requirements can also be reduced176. Consequently, instead
of producing a mixture or requirements and behavioural models, systems
and software engineers need to produce a single OOCONOPS for each of the
solution system options. These are discussed with the customer and other
stakeholders to verify that the selected solution system depicted in the
OOCONOPS meets the need and will remedy the problem.

The object-oriented paradigm encapsulates processes (functionality) as
well as data into an object. The types of ‘smart’ functions that might be en-
capsulated within an OOCONOPS were discussed in Section 17.6. Inher-
itance is a major advantage of the object-oriented systems engineering par-
adigm since most new systems that are similar to, or can be considered as a
class of, an existing system (Section 17.7).

175 Which unlike Figure 28-3 is abstract enough not to describe the format of the
solution options.
176 Note, in some cases, some requirements may still be needed at the contractual
boundaries between contractors and sub-contractors.

Chapter 28 Getting the right requirements right

454

28.7 Discussion
The A paradigm is a return to the systems engineering paradigm of the good
old days. In the A paradigm, the propensity for errors is much lower which
provides an improvement in reliability and a reduction in the amount of
work performed in the project (cost and schedule) as compared to the B
paradigm which is inherently flawed. Getting the right requirements in the
right way means minimizing the number of requirements and communi-
cating the vision via an OOCONOPS. The remaining few requirements need-
ed should be a printout from the OOCONOPS rather than being produced by
a requirements analysis exercise. Today in some instances, requirements
are bypassed when the contractor is asked to deliver according to a sche-
matic or copy a prototype. Hence, using an OOCONOPS is not really a com-
pletely new way of requirements engineering. Requirements are a means
not an end.

Figure 17-2 should be viewed in the context of the B paradigm, a better
A paradigm version where the CONOPS drives the work is shown in Figure
28-8.

Figure 28-8 CONOPS drives work

28.8 Summary
The Chapter opened with the statement that research has shown that there
is an on-going consensus that:

1. good requirements are critical to the success of a project,
2. the current requirements paradigm produces poorly written re-

quirements and
3. ways of producing better requirements have been around for more

than 20 years.

Chapter 28 Getting the right requirements right

455

So, instead of producing yet another opinion how to write better re-
quirements, this Chapter began by posing the following question: why do
systems and software engineers continue to produce poor requirements
when ways to write good requirements have been documented in confer-
ence papers and textbooks? The Chapter then documented findings from
research into the problem via the systems thinking perspectives and hypoth-
esised that there are two requirements paradigms; the original A paradigm
and the current B paradigm which is inherently flawed. The Chapter then
dissolved the problem of poor requirements by applying technology to re-
duce the need for most of the requirements written today.

28.9 Conclusion
The current type A requirements paradigm is inherently flawed and cannot
be repaired. An OOCONOPS based paradigm can eliminate the need for
many of the requirements necessary in the current requirements paradigm,
increasing the probability of a successful project at lower cost. Accordingly,
the OOCONOPS paradigm dissolves the problem of poor requirements by
making most of the text-mode requirements used in the B paradigm irrele-
vant and unnecessary.

Chapter 29 Yes systems engineering, you are a discipline

457

29Yes	systems	engineering,	you	are	a	
discipline

“It ain’t what you don’t know that gets you into trouble.
It’s what you know for sure that just ain’t so.” – Mark
Twain 1835-1910.

Systems engineering is currently characterized by conflicting and contradic-
tory opinions on its nature. This Chapter begins by describing the evolution
of systems engineering in the NCOSE/INCOSE and the difficulty in defining
and differentiating systems engineering as a discipline. The Chapter then
identifies and discusses six different and somewhat contradictory camps or
perspectives of systems engineering. After identifying the cause of the con-
tradictions the Chapter suggests one way to reconcile the camps is to dis-
solve the problem to distinguish between the activity known as systems en-
gineering and the role of the systems engineer with a return to the old pre-
NCOSE systems engineering paradigm. The Chapter then continues by test-
ing the hypothesis and shows that systems engineering is a discipline that
can be differentiated from other disciplines. However, it is not a traditional
engineering discipline.

29.1 Systems engineering in NCOSE/INCOSE
Systems engineers have had a problem, not only explaining what they do, to
other people but also defining it amongst themselves since the early 1990’s
(Chapter 2). The baseline for this research however began at the 1994 sym-
posium of the NCOSE, where presenter after presenter opened their presen-
tation with a definition of systems engineering and each definition was dif-
ferent. However, when each presenter continued by describing the func-
tions performed by systems engineers, they talked about planning, organiz-
ing, directing and controlling; the traditional functions of management
(Fayol, 1949) page 8). When asked what systems engineers did, their an-
swers were also different. These observations in 1994 triggered a research

2012

Chapter 29 Yes systems engineering, you are a discipline

458

program into the nature of systems engineering and its overlap with project
management which began with an analysis of the activities or functions per-
formed by systems engineers. The initial research showed that there
seemed to be no unique body of knowledge to systems engineering and that
all of the activities performed by systems engineers, apart from possibly re-
quirements and interfaces, were also performed by other types of engineers
(Chapter 2). Chapter 2 concluded with “systems engineering is a discipline
created to compensate for the lack of strategic technical knowledge and ex-
perience by middle and project managers in organizations functioning ac-
cording to Taylor’s “Principles of Scientific Management”. Subsequent re-
search into the nature of systems engineering included a literature review of
text books published between 1959 and 2009 starting with Goode and
Machol (Goode and Machol, 1959) as well as the proceedings of all the in-
ternational symposia of the INCOSE since 1991. Findings from this research
determined that (Chapter 12 and 23):
 The role of the systems engineer in the workplace depends on the situa-

tion. This is because the role of the systems engineer has evolved over
time so that it is different in practically every organisation and has vari-
ous degrees of overlap with the roles of project managers and person-
nel in other disciplines.

 Definitions and descriptions of systems engineering comprise different
interpretations of the broad raft of activities that systems engineers
might undertake according to their role in the workplace.

This multichotomy exists because different people have chosen or per-
ceived different meanings of the term ‘systems engineering’ for almost 60
years. Consider the following comment from 1960 “Despite the difficulties of
finding a universally accepted definition of systems engineering, it is fair to
say that the systems engineer is the man who is generally responsible for the
over-all planning, design, testing, and production of today’s automatic and
semi-automatic systems” (Chapanis, 1960) page 357). Jenkins expanded that
comment into twelve roles (activities performed by a person with the title
systems engineer) of a systems engineer and seven of those roles over-
lapped the role of the project manager (activities performed by a person
with the title project manager) (Jenkins, 1969) page 164). Since that time,
systems engineering has evolved and some of the evolution in systems engi-
neering can be seen in the very little overlap between Jenkin’s twelve roles
and the twelve systems engineering roles documented by Sheard in 1996
(Section 23.1).

29.2 The seven camps in systems engineering
An analysis of the different views of/opinions on/worldviews of systems en-
gineering in the early years of the 21st century identified the following

Chapter 29 Yes systems engineering, you are a discipline

459

somewhat overlapping camps: Lifecycle, Process, Problem, Discipline, Sys-
tems thinking and non-systems thinking, Domain and Enabler. Consider
each of these camps:

29.2.1 Lifecycle camp

Some systems engineers seem to have an understanding of the A paradigm
early stage systems engineering activities that take place in the concept def-
inition stage of a solution system acquisition177 (Chapter 28). The majority
however live in the B paradigm and have no idea that the concept definition
phase even exists, they don’t understand what happens in that phase and
they think that systems engineering in the acquisition domain begins with
the requirements analysis phase. The early stage campers tend to be the old
timers; while the others tend to be those systems engineers educated in the
last 20-30 years in the B paradigm based on the US DOD where the whole
set of activities performed in early stage systems engineering were removed
from “systems engineering”178. In the B paradigm, requirements are but one
of the inputs to the ‘systems engineering process’ (Martin, 1997) page 95;
(Eisner, 1997); (Wasson, 2006) page 60; (DOD 5000.2-R, 2002), pages 83-84).

29.2.2 Process camp

Some systems engineers, particularly in INCOSE and the US DOD, are pro-
cess-focused (Section 25.2). These are the campers who tend to insist that
organisations must modify themselves to follow a particular process Stand-
ard. However, these campers can’t seem to see the big picture and don’t
seem to realise that not only does the “systems engineering process” map
into the ubiquitous general problem solving process but there is also cur-
rently no single widely agreed upon “systems engineering process” since
over the years, the “systems engineering process” has been stated in many
different and sometimes contradictory ways. These campers fail to realize
that the reason why these documented processes are different is that they
were developed by some entity at some point in time for a specific situation
and need to be tailored for other specific situations. It is the systems engi-
neer designs, architects or customizes the process that will be used to realize
the solution system179 (Chapter 19). These campers also ignore:

177 The solution system is acquired to remedy a problem.
178 This removal was documented in DOD 5000.2-R, "Mandatory Procedures for Ma-
jor Defense Acquisition Programs (MDAPS) and Major Automated Information Sys-
tem (MAIS) Acquisition Programs," US Department of Defense, 2002.
179 Perhaps this is because process architecting tends to be overlooked because pro-
cess architecting is generally not taught in systems engineering classes which tend to

Chapter 29 Yes systems engineering, you are a discipline

460

 The literature on excellence which focuses on people and ignores pro-
cess (Peters and Waterman, 1982; Peters and Austin, 1985) and
(Rodgers, et al., 1993).

 The axiom “garbage-in-garbage-out” (GIGO) which although originally
was applied to computer data, holds true for all types of processes.

 Attempts to warn against “overemphasis on the institutionalization of
processes rather than the value or effectiveness of the effort”
(Armstrong, 1998).

In the last few years, the process camp has produced Model Based Sys-
tems Engineering (MBSE) by applying 21st century technology in their 20th

century systems engineering process paradigm. MBSE in its current form:

 is an attempt to return to the early stage systems engineering activities
performed in the 1960’s and 70’s , and,

 ignores the potential of the integrated information environment to pro-
duce interdependent third and fourth generation systems engineering
and project management tools that could improve on the current para-
digm and reduce the probability of project failures by adding expert sys-
tem and artificial intelligence functionality to the tools180; a potential
that was demonstrated at the SEEC at UniSA in the early years of the
21st century (Kasser, et al., 2002; Cook, et al., 2001; Kasser, 2000a;
2002c).

29.2.3 Problem camp

The problem solving camp can be traced back at least as far as 1980
(Gooding, 1980). These campers maintain the tradition of the pre-NCOSE
systems engineers and focus on the problem and identifying the best solu-
tion available given the constraints at the time (Hitchins, 2007). Some of
these campers also address carrying out that process to realize the solution
system (Bahill and Gissing, 1998). This is why their systems engineering pro-
cess overlaps the various versions of problem solving process (Section 25.3).

29.2.4 Discipline camp

Wymore defined systems engineering as a discipline (Wymore, 1994). Sys-
tems engineering meets the requirement for a discipline (Sections 21.2 and
21.3). However, as noted above, all the elements of the current INCOSE ap-

assume a process exists and start from there. Process architecting however is taught
in project management classes as a part of creating project plans.
180 As a simple example in smartening up requirements management tools, Tiger Pro
contains the functionality to detect and correct some types of errors in requirements
(Kasser, Tran and Matisons, 2003).

Chapter 29 Yes systems engineering, you are a discipline

461

proach to systems engineering overlap those of project management and
other disciplines which make it difficult to identify systems engineering as a
distinct discipline for tackling complex problems. For examples, see:
 A few examples of the different overlaps between systems engineering

and project management (Jenkins, 1969; Brecka, 1994; Roe, 1995;
DSMC, 1996; Sheard, 1996; Johnson, 1997; Watts and Mar, 1997; Bot-
tomly, et al., 1998; Kasser, 1996).

 Emes at al. who discussed overlaps between systems engineering and
other disciplines (Emes, et al., 2005).

 Eisner who listed a general set of 28 tasks and activities that were nor-
mally performed within the overall context of large-scale systems engi-
neering (Eisner, 1988). He calls the range of activities ‘specialty skills’
because some people spend their careers working in these specialties.
Thus according to Eisner in 1988 [the role of]181 systems engineering
overlaps at least 28 engineering specialties.

 Eisner who expanded his earlier list and discussed 30 tasks that form the
central core of systems engineering (Eisner, 1997) page 156). The whole
area of systems engineering management is covered in just one of the
tasks. Eisner states that “not only must a Chief Systems Engineer under-
stand all 30 tasks; he or she must also understand the relationships be-
tween them, which is an enormously challenging undertaking that re-
quires both a broad and deep commitment to this discipline as well as
the supporting knowledge base”.

 INCOSE President John Thomas expands on this role in his presentations
on the need for systems engineers with moxie, see (Thomas, 2011) for
one example.

 Goode and Machol make no distinction between ‘systems engineering’
and ‘engineering design’ or even ‘design’ and use the terms inter-
changeably (Hall, 1962) page 20 citing (Goode and Machol, 1959).
Archer defined design as “a goal-directed problem solving activity”
(Archer, 1965). Fielden defined ‘engineering design’ as “the use of sci-
entific principles, technical information and imagination in the definition
of a mechanical structure, machine or system to perform prespecified
functions with the maximum economy and efficiency” (Fielden, 1963)
and Matchett and Briggs defined ‘design’ as “the optimum solution to
the sum of the true needs of a particular set of circumstances” (Matchett
and Briggs, 1966). Bahill and Dean, in discussing the requirements in the
‘systems engineering process’ call it the ‘system design process’ and use
the terms ‘design’ and ‘solution’ interchangeably (Bahill and Dean,
1997). And, Hari et al. provided an example of the various activities per-

181 Author’s interpretation.

Chapter 29 Yes systems engineering, you are a discipline

462

formed in new product design that overlap those of systems engineer-
ing (Hari, et al., 2004).

 The UK DERA definition of systems engineering is “a set of activities
which control the overall design, development, implementation and in-
tegration of a complex set of interacting components or systems to meet
the needs of all the users” (DERA, 1998). Controlling activities are pro-
ject management activities, development and testing activities are engi-
neering activities.

 Project management is defined as “the planning, organizing, directing,
and controlling of company resources (i.e. money, materials, time and
people) for a relatively short-term objective. It is established to accom-
plish a set of specific goals and objectives by utilizing a fluid, systems
approach to management by having functional personnel (the tradition-
al line-staff hierarchy) assigned to a specific project (the horizontal hier-
archy)” (Kezsbom, et al., 1989). Kezsbom’s systematic approach to pro-
ject management requires the break down and identification of each
logical subsystems component into its own assemblage of people,
things, information or organization required to achieve the sub-
objective (Kezsbom, et al., 1989) page 7).

 The US DOD defined Integrated Product and Process Development
(IPPD) as “a management process that integrates all activities from
product concept through production/field support, using a multifunc-
tional team, to simultaneously optimize the product and its manufactur-
ing and sustainment processes to meet cost and performance objec-
tives” (DOD, 1996). Looking at industry today, Hall’s mixed systems en-
gineering teams (Hall, 1962) seem to be called IPTs and are working in
the context of “concurrent engineering” which has existed as a recog-
nizable topic since the mid 1980’s. The aim of both concurrent engi-
neering and Systems Engineering is “to provide a good product at the
right time … suitably free of defects and ready when the customer
wants it” (Gardiner, 1996)

 Configuration Management is defined as “a field of management that
focuses on establishing and maintaining consistency of a system’s or
product’s performance and its functional and physical attributes with its
requirements, design, and operational information throughout its life”
(MIL-HDBK-61A, 2001). There are two types of configuration audits
within configuration management which overlap systems engineering
activities (Section 28.3.2.1.3).

The discipline camp tends to account for the overlap by viewing systems
engineering as a meta-discipline incorporating the other disciplines and hold
that systems engineering needs to widen its span to take over other disci-
plines.

Chapter 29 Yes systems engineering, you are a discipline

463

29.2.5 Systems thinking and non-systems thinking camps

The systems thinking camp tends to be systems engineers who can view an
issue from several perspectives (Evans, 1996; McConnell, 2002; Rhodes,
2002; Martin, 2005; Selby, 2006; Beasley and Partridge, 2011), while the
non-systems thinkers tend to have a single viewpoint. The non-systems
thinkers also generally exhibit the ‘biased jumper’ level of critical thinking
(Wolcott and Gray, 2003).

29.2.6 Domain systems engineering

There is a domain systems view of the role of systems engineers/engineering
as well based on the role of the engineer. If you are an engineer working on
a widget system then you are a widget system engineer. Examples are net-
work systems engineers/engineering, control system engineers/engineering,
communications systems engineers/engineering, hydraulic systems engi-
neers/engineering, transportation systems engineers/systems engineering,
etc.

29.2.7 Enabler camp

In the enabler camp, systems engineering is the application of holistic think-
ing. Moreover, it can be, and is, used in all disciplines for tackling certain
types of (complex) problems; see “[systems engineering] is a philosophy and
a way of life” (Hitchins, 1998).

29.3 Reconciling the camps
Each camp is focused on the role of the systems engineer in the workplace
and each camp has a different version or vision of that role. As long as these
camps were isolated, there was no problem; it is when these different roles
are compared that the confusion, complexity, contradictions and overlaps
with other disciplines appear. The situation is indicative of the early stages
of a discipline much like the state of chemistry before the development of
the periodic table of the elements or the condition of electrical engineering
before the development of Ohm’s Law and later the development of electri-
cal motors before Maxwell’s equations were discovered. For systems engi-
neering to become a discipline, these camps must be reconciled or unified.

There are four ways of remedying or dealing with a problem, namely
solving, resolving, dissolving or absolving the problem (Ackoff, 1978) page
13), where only the first three actually remedy the problem. The four ways
are:

 Solving the problem is when the decision maker selects those values of
the control variables which maximize the value of the outcome.

Chapter 29 Yes systems engineering, you are a discipline

464

 Resolving the problem is when the decision maker selects values of the
control variables which do not maximize the value of the outcome but
produce an outcome that is good enough (satisfices the need).

 Dissolving the problem is when the decision maker reformulates the
problem to produce an outcome in which the original problem no longer
has any meaning.

 Absolving the problem is when the decision maker ignores the problem
or imagines that it will eventually disappear on its own. Problems may
be intentionally ignored because they are too expensive to remedy, or
because the technical or social capability needed to provide a remedy is
not known.

The chosen approach to reconciling the camps is to dissolve the problem
by making a change in the paradigm. This approach redesigns the system
containing the problem or changes the perspective from which the problem
is viewed, to produce an innovative solution. The current systems engineer-
ing paradigm is based on the role of the systems engineer in the workplace,
namely what the systems engineer does recognizing that what the systems
engineer does is different in each organization. The approach to reconcile
the camps is to distinguish between two systems engineering paradigms:

 systems engineering – the role (SETR) being what systems engineers do
in the workplace, and

 systems engineering – the activity (SETA) that can be performed by
anyone.

SETA is the set of activities known as systems engineering, while SETR is
a role or job description of the systems engineer. Having made the distinc-
tion, the following criterion was used to determine if an activity does or does
not belong in the set of activities known as SETA (Kasser and Hitchins, 2009;
Kasser, et al., 2009):

 If the activity deals with parts and their interactions as a whole, then it is
an activity within the set of activities to be known as SETA.

 If the activity deals with a part in isolation, then the activity is not an
activity within the set of activities to be known as SETA but is part of an-
other set of activities (‘something else’), e.g., engineering management,
software engineering, etc.

SETA is a return to Hall’s definition of “systems engineering as a func-
tion182 not what a group does183” (Hall, 1962) page 11). Hall added “By rec-
ognizing the scope of the function it becomes possible to dissect it, to under-

182 Activity.
183 Role.

Chapter 29 Yes systems engineering, you are a discipline

465

stand its problems and to reconstruct it to make it more efficient than it is
today”.

Kuhn wrote that an alternative paradigm is a reconstruction of the field
from new fundamentals, a reconstruction that changes some of the field’s
most elementary theoretical generalizations as well as many of its paradigm
methods and applications (Kuhn, 1970). If SETA is an alternative systems
engineering paradigm to SETR, then to meet Kuhn’s requirement for an al-
ternative paradigm it has to resolve conflicts that cannot be readily resolved
within the current paradigm, namely reconcile the camps.

29.4 Testing the hypothesis
The hypothesis that SETA is a systems engineering paradigm was tested by
posing the following research questions:

1. Is there another set of activities (equivalent to SETA) that can be
considered as a discipline that is used in other disciplines and do-
mains?

2. Can SETA as a discipline be differentiated from other disciplines?
3. Can the traditional SETR view of systems engineering be described

in terms of SETA?

Consider each research question in turn.

29.4.1 Another set of activities.

Is there another set of activities that can be considered as a discipline that is
used in other disciplines and domains?

The answer to the question is yes. Mathematics is considered both as a
discipline and as a set of tools used in many if not all disciplines and do-
mains. For example, operations research is based on mathematics, manag-
ers commonly use spreadsheets, and humanity uses the ubiquitous digital
calculator to perform mathematical calculations many situations.

29.4.2 Differentiation of SETA as a discipline

Can SETA as a discipline be differentiated from other disciplines?
The answer to the question is yes which resolves the issue of differenti-

ating systems engineering from other disciplines, something which cannot
be done in the current INCOSE paradigm. SETA is often used in the form of
applying systems thinking and critical thinking (Kasser and Mackley, 2008;
Kasser, 2009; Kasser, 2013) in the ubiquitous generic problem-solving-
solution-realization process.

Mathematics is an enabling discipline which provides a set of tools and
techniques for tackling certain types of problems. Similarly SETA is not a
traditional engineering discipline but can also be considered as an enabling

Chapter 29 Yes systems engineering, you are a discipline

466

discipline, providing a set of tools and techniques, comprising activities that
deal with parts of a system and their interactions as a whole, which are used
to identify underlying problems and realize optimal solutions via the systems
engineering problem solving process. This is a change in perspective with
respect to the current INCOSE discipline camp which looks outwards from
systems engineering. In the discipline camp, SETR is or should be taking over
other disciplines. The enabler camp looks at systems engineering from the
outside. From this outside perspective, SETA is an enabling discipline used in
those other disciplines and professions.

Moreover, the SETA discipline is a return to the pre-NCOSE systems en-
gineering paradigm for managing complexity and innovation as documented
by the literature of the time including (Goode and Machol, 1959) and (Hall,
1962), when ‘systems engineering’ (SETA) was a tool used by, or synony-
mous with, ‘design’ (Goode and Machol, 1959; Hall, 1962; Fielden, 1963;
Archer, 1965; Matchett and Briggs, 1966; Jones, 1970) page 115) and ‘sys-
tems engineers’ (SETR) performed SETA using systems engineering tools
(Wilson, 1965; Alexander and Bailey, 1962; Chestnut, 1965) such as:

 Probability,
 Single thread – system logic,
 Queuing theory,
 Game theory,
 Linear programming,
 Group dynamics,
 Simulation, and
 Information theory

29.4.3 Traditional activities

Can the traditional SETR view of systems engineering be described in terms
of SETA?

The answer is yes. From the Big Picture perspective, SETA and non-SETA
are subsets of the whole set of workplace activities performed in the prob-
lem-solving-solution-realization process which covers the entire activity from
the time an issue is raised (which in turn becomes a problem which then
needs a solution) to the time of disposal of the solution system when it no
longer satisfies the need. This set of activities may be partitioned into dif-
ferent mixes of subsets in various ways such as by profession and discipline
(project/engineering management, systems engineering, engineering, new
product design, etc.) and by time (the phases in the system lifecycle). These
SETA and non-SETA activities can be also be grouped into the three interde-
pendent streams of work, Development, Management and Test/Quality
which merge at predefined milestones during the SDLC as shown Figure 2-2.

Chapter 29 Yes systems engineering, you are a discipline

467

Due to the various ways in which SETA and non-SETA have been allocat-
ed to personnel184 performing SETR and non-SETR, in any specific organisa-
tion at any specific time, a specific SETR will perform a mixture of SETA and
non-SETA in one or more of the three interdependent steams of work. For
example, one instance of SETR might perform systems architecting in the
development stream while another may perform systems engineering man-
agement in the management stream and a third perform system integration.
At the same time non-SETR personnel, such as designers or project manag-
ers might be performing different mixtures of non-SETA and SETA. This situ-
ation also explains why there seem to be a lot of people in industry doing
SETA without being aware of the term ‘systems engineering’.

SETR has traditionally been associated with Defence and aerospace due
to their conflation. MIL-STD-499 defines a total systems approach for the
development of defence systems. Section 1.1 of the standard states that
“the systems engineering process is applied iteratively through the system
lifecycle to translate stated problems into design requirements” (MIL-STD-
499B, 1993). Yet the systems engineering process described in the standard
is just a version of the latter part of ubiquitous generic problem-solving-
solution-realization process stated in engineering language. SETA can thus
be considered as an enabling discipline used in the problem-solving-solution-
realization process performed in the domain of acquiring and developing
Defence systems. ISO/IEC 15288 also contains a list of processes used in the
domain of acquiring and developing systems which overlap all three streams
of work (Arnold, 2002). Each of those processes contains SETA and non-
SETA.

29.5 Discussion
Systems engineering has been associated with Defence and aerospace due
to their conflation. SETA is often used to perform design, yet Love argues
“the central activity of designing is ‘epistemologically different’ from the ap-
plication of systems methods, techniques, and approaches and perspectives”.
It [his paper] “suggests the uncritical conflation of the activities of designing
and systems analysis seriously compromises theoretical and practical devel-
opments in both Systems and Design and this has led to confusion in both
fields and to the development of extensive, unnecessary and over-complex
theories targeting an epistemologically irresolvable problem” (Love, 2003).
Overly complex theories are a symptom of a flaw in the paradigm. There is a
need to differentiate SETA from the system acquisition and development

184 The word ‘personnel’ is used to avoid the semantically loaded terms engineers,
systems engineers, project manager, etc.

Chapter 29 Yes systems engineering, you are a discipline

468

lifecycle currently conflated with systems engineering.
Systems engineering began as SETA and evolved into SETR (Chapter 23).

The SETR paradigm, led by the discipline camps looks outwards from systems
engineering in an effort to expand SETR into a meta-discipline. The SETA
paradigm on the other hand, looks inwards at systems engineering from the
outside and sees SETA as an enabling discipline applied inside those other
disciplines. SETR is performed in all columns of the HKMF shown in Figure
21-3. However, in any one layer, most of SETA tends to be performed in
Column’s A and B; the activities involved in figuring out the problem and
determining and specifying the optimal solution system to be realized. Most
of the activities in columns C, D and E are non-SETA performed by engineers,
designers and testers. Some SETA does occur to ensure that the system lev-
el specifications are met and to deal with the emergent properties. SETA
picks up again during systems integration and the commissioning of the solu-
tion system in the field phase of the SDLC in column F. In addition, if the
subsystems are complicated enough they may have their own set of SETA
and non-SETA. For example, in the Apollo program, there was an overall set
of SETA for the entire mission; yet the realization of each of the subsystems
was non-SETA engineering as far as the entire mission was concerned. How-
ever, the realization of the Lunar Module and the ALSEP and the other tier
one subsystems each needed SETA and non-SETA activities. And within the
ALSEP, realization of the central station and each of the scientific experi-
ments required SETA and non-SETA activities irrespective of the job title
(SETR) of the person who performed the activities.

SETA does not actually produce a tangible product. SETA produces doc-
uments, namely the plans, specifications, reports, etc. during the SDLC. The
non-SETA activities including engineering actually produce the solution sys-
tem.

The SETA/SETR paradigms provide for agreement on SETA185 and the
recognition of the reasons for the different roles of the systems engineer.
The lifecycle camp views SETR over the entire problem-solving-solution-
realization process. The process camp views SETR in the latter part of the
SLC documented in the various standards applied to systems engineering
(Honour and Valerdi, 2006; Haskins, 2011), and the problem camp views
SETR as a problem solving role anywhere in the problem-solving-solution-
realization process.

The SETA/SETR paradigms also provide a solution to the problem of de-
veloping a manageable SEBoK. SETR has evolved over time so that it is dif-
ferent in practically every organisation and has various degrees of overlap

185 The INCOSE Fellows accepted the definition in 2009, see (Kasser and Hitchins,
2009).

Chapter 29 Yes systems engineering, you are a discipline

469

with the roles of other disciplines. This makes differentiating systems engi-
neering from the other roles in the workplace extremely difficult and has
resulted in the discipline camp calling systems engineering a meta-discipline
that embodies the others. It also complicates developing a manageable SE-
BoK, since in order to be complete the contents of the SEBoK-SETR would
have to cover the knowledge needed in the different SETR in practically eve-
ry organisation and the knowledge needed in the disciplines where the over-
laps occur. SETA on the other hand, can readily be determined in an objec-
tive manner by examining the activities in all three streams of work in the
SDLC in each column of the HKMF, sorting out the SETA and creating a SETA-
SEBoK with traceability to each area in the HKMF. Moreover, additional re-
search can tag each of the areas of the HKMF with required competencies.

Personnel known as systems engineers (SETR) often perform a mixture of
SETA and engineering. SETA in all three streams of work incorporates the
mental activities of applying holistic thinking (Kasser, 2013). This is the way
post-independence Singapore was systems engineered, by personnel in pub-
lic health, housing, Defence, transportation, etc. and is the essence of the
SETA paradigm irrespective of SETR and domain. The people who do SETA
do it as a way of life (Hitchins, 1998) whether they are, or are not, known as
systems engineers (SETR). For example, SETA is used when:
 Cooking a meal. The meal emerges from both the process and the com-

bination of, and the interaction between, the ingredients. The best in-
gredients will not save a meal that was over-cooked or under-cooked.

 Diagnosing an illness. Good physicians consider the symptoms holisti-
cally in the context of the physiology of the patients and their environ-
ments.

 Organising a conference. The conference emerges from the combina-
tion of, and interaction between, the location, speakers, reviewers, del-
egates, and other entities.

 Solving a crime. Detectives, upon investigation, find a variety of clues
which (should) lead to the perpetrator

And the personnel who perform these activities are not known as sys-
tems engineers. This is not surprising since the need for systems thinking in
tackling problems has also long been recognised outside the systems engi-
neering community: for example “when people know a number of things,
and one of them understands how the things are systematically categorized
and related, that person has an advantage over the others who don’t have
the same understanding” (Luzatto, circa 1735). Ford discussed looking at the
value chain of products transported by the railroads as a system, in order to
solve the transportation problem of his time (Ford and Crowther, 1922),
pages 230-231). Other examples are Crosby’s “completeness” (Crosby,
1979), Deming’s “system of profound knowledge” (Deming, 1993), and Sen-

Chapter 29 Yes systems engineering, you are a discipline

470

ge’s “fifth discipline” (Senge, 1990); all state the need for systems thinking,
and the benefits to be gained therefrom186.

29.6 Conclusions
Systems engineering can be considered as being two paradigms:

1. SETR: systems engineering performed by personnel known as sys-
tems engineers. Examples are network systems engineering, con-
trol system engineering, communications systems engineering, etc.
In many instances the type of system is dropped from the title. This
systems engineering overlaps other disciplines and the exact role
depends on the situation.

2. SETA: the problem identification and solution realization activities
on a system at the system level in accordance with the activity defi-
nition (Kasser and Hitchins, 2009). This systems engineering is an
enabling discipline like mathematics.

Separation of the SETA and SETR paradigms:

 Resolves the conflicts and contradictions in the current state of systems
engineering; in addition:

1. The traditional activities known as systems engineering can be de-
scribed in terms of SETA and SETR.

2. SETR is the job title for a person who performs a mixture of SETA
and non-SETA.

3. SETA is an enabling discipline that is used in other disciplines and
domains.

4. SETA as a discipline can be differentiated from other disciplines.

 Resolves issues due to the overlap between systems engineering and
project management.

Irrespective of what they are called187, personnel leading projects should
be Type Vs (Section 23.3) with sufficient knowledge and experience in the
problem, solution and implementation domains to be able to make informed
decisions and understand the advice of experts in each domain. They should
also be people who apply SETA all the time, namely it is their way of life.

186 Systems thinking lets you understand the situation, however you need to go be-
yond systems thinking and use holistic thinking to create innovative solutioms to
complex problems (Kasser, 2013).
187 The term engineer-leader is used in Singapore to indicate that the person needs
proficiency in both systems engineering and project management.

Chapter 29 Yes systems engineering, you are a discipline

471

Figure 29-1 The Type V systems engineer

Postscript

473

30Postscript
This book has viewed systems engineering from several perspectives

applying holistic thinking to the problem of determining the nature of sys-
tems engineering. The output product of the research has been

 The HKMF for understanding systems engineering. The benefits of the
HKMF problem-based paradigm have been discussed in the relevant
Chapters. Other benefits not previously discussed should include:

 Moving organizations away from activities (industrial age) and to-
wards problem solving and the knowledge needed to make in-
formed decisions (information age).

 Requiring the education of a generation of people who will under-
stand the consequences of their decisions. This could be the most
tangible benefit and the real change.

 The holistic thinking perspectives (HTP) introduced in section 28.2 are
expanded in Holistic Thinking: creating innovative solutions to complex
problems (Kasser, 2013).

 An understanding of why systems engineering seems to overlap other
disciplines and is applicable in all domains. Systems engineering is an
enabling discipline providing a set of thinking tools for creating solu-
tions to complex problems.

Perceived from the Temporal perspective, the body of knowledge that
we have today is not the sum of all knowledge. For example, McCloskey
wrote “In the present century, physical scientists, aided by powerful mathe-
matical tools, have reduced to principle many phenomena little known and
less well understood by the predecessors” (McCloskey, 1954) page 258. One
could argue that these scientists have solved what appeared at the time to
be wicked problems? What are we going to learn in the future and how will
it change our way of thinking?

2013

Acronyms

475

31Acronyms

ADATS Air-Defense Anti-Tank System
ALSEP Apollo Lunar Surface Experiments Package
ASQ American Society for Quality
BPR Business Process Reengineering
CAIV Cost as an independent variable
CASE Computer Aided Software Engineering
CCB Configuration Control Board
CCS Central control station (LuZ)
CES Control and electronics system (Luz)
CEST Capacity for engineering system thinking
CMM Capability Maturity Model
CMMF Competency model maturity framework
CONOPS Concept of operations
COTR Contracting Officer’s Technical Representative
COTS Commercial off the shelf
CSEP Certified systems engineering professional
CRIP Categorized Requirements in Process
DERA [UK] Defence Evaluation and Research Agency
DIVAD Division Air Defense
DOD Department of Defense
DODAF Department of Defense Architecture Framework
DT&E Developmental test and evaluation
DR Discrepancy report
FRAT Functions Requirements Answers and Test
FRE Framework for Research and Education
FREDIE Framework for Requirements Engineering in a Digital Inte-

grated Environment
HTP Holistic thinking perspective
HKMF Hitchins-Kasser-Massie Framework for understanding systems

engineering
ICPM Institute of Certified Professional Managers
IDE Integrated Digital Environment
IEEE Institute of Electrical and Electronics Engineers
INCOSE International Council on Systems Engineering
IPPT Integrated Product Process Team
IPT Integrated Process Teams
ISO International Organization of Standards
IT Information Technology
IV&V Independent Verification and Validation
JSF Joint Strike Fighter

Acronyms

476

LEO Low earth orbiting
LOC Local controller (LuZ)
LSA Logistics Support Analysis
MATO Multiple-award-task-ordered
MBNQA Malcolm Baldridge National Quality Award
MBWA Management by Walking Around”
MTBF Mean Time Between Failures
MTTR Mean Time to Repair
NASA The National Aeronautics and Space Administration
NCOSE National Council on Systems Engineering
NDIA National Defense Industrial Association
NST Network Scheduling Tool
O&M Operations and maintenance
OCD Operations Concept Document
ODC Other Direct Charges
OOCONOPS Object-oriented CONOPS
OOM Object-oriented Methodology
OT&E Operational test and evaluation
PAM Product Activity Milestone
PDCA Plan Do Check Act
PDR Preliminary Design Review
PERCY PERsonal portal into Cyberspace
PERT Program Evaluation and Review Technique
PIT Process improvement team
PPPT People Process Product Time
PSP Personal Software Process
QSE Quality System Elements
RFP Request for Proposal
ROI Return on investment
RRS Reward and recognition system
RTM Requirements traceability matrix
SBA Small Business Administration
SCADC Standard Central Air Data Computer
SCCB Strategic CCB
SDB Small Disadvantaged Business
SDLC Software and Systems Development Lifecycle
SDR System Design Review
SEBoK Systems engineering body of knowledge
SECF Systems Engineering Competency Framework
SECT Systems engineering competency taxonomy
SEEC Systems Engineering and Evaluation Centre
SEGS Solar electrical power generating system
SEMP Systems Engineering Management Plan
SETA Systems engineering – the activity

Acronyms

477

SETR Systems engineering – the role
SLC System and software lifecycle
SOW Statement of Work
SSM Soft system methodology
SRD System Requirements Document
SRR System Requirements Review
STOVL Short Take-Off & Vertical Landing
T&E Test and Evaluation
TEMP Test and Evaluation Master Plan
TIGER Tool to ingest and elucidate requirements
TQM Total Quality Management
TSI Total Systems Intervention
UML Unified Modelling Language
UMUC University of Maryland University College
UniSA University of South Australia
US United States [of America]
USAF US Air Force
USMC US Marine Corps
USN US Navy
WBS Work Breakdown Structure

References

479

32References
The papers cited as references to Kasser’s work may generally be found on
the publications page at http://therightrequirement.com.

Ackoff, R. L., The Art of Problem Solving, John Wiley & Sons, New York, 1978.
Ackoff, R. L., "The Future of Operational Research is Past," Critical Systems

Thinking Directed Readings, R. L. Flood and M. C. Jackson (Editors),
1991.

---, Ackoff's Best. His Classic Writings on Management, John Wiley & Sons,
Inc., New York, 1999.

Adams, S., Dilbert cartoons, 2006, http://www.dilbert.com, accessed on 6
November 2006.

Alderfer, C. P., Existence, Relatedness and Growth: Human Needs in Organi-
zational Settings, The Free Press, 1972.

Alexander, I. F. and Stevens, S., Writing Better Requirements, Addison-
Wesley, 2002.

Alexander, J. E. and Bailey, J. M., Systems Engineering Mathematics, Pren-
tice-Hall, Inc., Englewood Cliff, NJ., 1962.

Allen, M., Smart thinking: skills for critical understanding and writing, Oxford
University Press, 2004.

Allison, J. S. and Cook, S. C., 1998, The New Era in Military Systems Thinking
and Practice, proceedings of First Regional Symposium of the Sys-
tems Engineering Society of Australia INCOSE Region 6 (SETE 98).

American Heritage, The American Heritage Dictionary of the English Lan-
guage, Houghton Mifflin Company, 2000.

Anderson, K. and Dibb, P., "Strategic Guidelines for enabling research and
development to support Australian Defence, paragraph 121," 1996.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer,
R. E., Pintrich, P. R., Raths, J. and Wittrock, M. C. (Editors), A Taxon-
omy for Learning, Teaching, and Assessing: A Revision of Bloom's
Taxonomy of Educational Objectives, Allyn and Bacon, 2000.

Angel, C. D. and Froelich, J., Six Sigma: What Went Wrong?, 2008,
http://www.destinationcrm.com/Articles/Columns-
Departments/The-Tipping-Point/Six-Sigma-What-Went-Wrong-
51394.aspx, accessed on 26 April 2009.

ANSI/EIA-632, "Processes for Engineering a System," American National
Standards Institute and Electronics Industries Association, Arling-
ton, VA, 1999.

Archer, L. B., Systematic Method for Designers, Council of Industrial Design,
London, 1965.

Armstrong, J. R., 1998, How Maturity Modeling Saved My Softball Team,
proceedings of the 8th INCOSE International Symposium.

References

480

Arnold, S., 2000, Systems Engineering: From Process towards Profession,
proceedings of The 10th Annual Symposium of the INCOSE.

---, "ISO 15288 Systems engineering — System lifecycle processes," Interna-
tional Standards Organisation, 2002.

Arthur, L. J., Rapid Evolutionary Development, John Wiley & Sons, Inc., 1992.
---, Improving Software Quality An Insider's Guide to TQM, John Wiley &

Sons, Inc., 1993.
Aslaksen, E. W., System Thermodynamics: A Model Illustrating Complexity

Emerging from Simplicity, Systems Engineering 7 (2004), no. 3, 271-
284.

Aslaksen, E. W. and Belcher, R., Systems Engineering, Prentice Hall, New
York, 1992.

Au, T. and Stelson, T. E., Introduction to Systems Engineering Deterministic
Models, Addison-Wesley Publishing Company, 1969.

Avison, D. and Fitzgerald, G., Information Systems Development: Methodolo-
gies, Techniques and Tools, McGraw-Hill Education (UK), Maiden-
head, 2003.

Badaway, M., Educating Technologists in Management of Technology, EMR
(1995), no. Fall.

Bahill, A. T. and Dean, F. F., 1997, The Requirements Discovery Process, pro-
ceedings of the 7th International Symposium of the INCOSE.

Bahill, A. T. and Gissing, B., Re-evaluating systems engineering concepts us-
ing systems thinking, IEEE Transaction on Systems, Man and Cyber-
netics, Part C: Applications and Reviews 28 (1998), no. 4, 516-527.

Bar-Yam, Y., 2003, When Systems Engineering Fails --- Toward Complex Sys-
tems Engineering, proceedings of Systems, Man and Cybernetics,
2003. IEEE International Conference on.

Barry, K., Domb, E. and Slocum, M. S., TRIZ - What Is TRIZ?, 2007,
http://www.triz-journal.com/archives/what_is_triz/, accessed on
31 October 2007.

Bass, L., Clements, P. and Kazman, R., Software Architecture in Practice, Ad-
dison Wesley, 1998.

Beasley, R. and Partridge, R., 2011, The Three Ts of Systems Engineering -
Trading, Tailoring and Thinking, proceedings of the 21st Annual
Symposium of the INCOSE.

Beer, S., Brain of the Firm - A development in Management Cybernetics,
Herder and Herder, NY, 1972.

---, The Heart of Enterprise, John Wiley & Sons, Stafford Beer Classic Edition,
Chichester, 1994.

Bender, W. G., Systems Engineering Reading List, 62-1, Bell Telephone La-
boratories, Nutley, NJ, 1962.

Bentley, C., PRINCE 2 A Practical Handbook, Oxford: Butterworth Heine-
mann, 1997.

References

481

Berg, J. M., Levia, O. and Rouillard, J., Object-Oriented Modelling, Kluwer
Academic Publishers, 1996.

Biemer, S. M. and Sage, A. P., "Systems Engineering: Basic Concepts and Life
Cycle," Agent-Directed Simulation and Systems Engineering, L. Yil-
maz and T. Oren (Editors), Wiley-VCH, Weinheim, 2009.

Biggs, J., Teaching for Quality Learning in University, Society for Research
into Higher Education and Open University Press, 1999.

Blanchard, B., System Engineering Management, John Wiley & Sons, Inc.,
1998.

Blanchard, B. B. and Fabrycky, W., Systems Engineering and Analysis, Pren-
tice Hall, 1981.

---, Systems Engineering and Analysis, Pearson Prentice Hall, Upper Saddle
River, NJ, 2006.

Boehm, B., A Spiral Model of Software Development and Enhancement, IEEE
Computer (1988), no. May.

---, Integrating Software Engineering and Systems Engineering, Systems En-
gineering 1 (1994), no. 1.

Boehm, B., Unifying SWE and SE, Computer (2000), no. March.
Bottomly, P. C., Brook, P., Morris, P. W. and Stevens, R., 1998, A Study of the

Relationship of Systems Engineering to Project Management, pro-
ceedings of Fourth Annual Symposium of the INCOSE-UK.

Brecka, J., Sabotage! Survey Finds Internal Resistance to Quality Initiatives,
Quality Progress (1994).

Brekka, L. T., Picardal, C. and Vlay, G. J., 1994, Integrated Application of Risk
Management and Cost of Quality, proceedings of The 4th Annual In-
ternational Symposium of the NCOSE.

Brill, J. H., Systems Engineering ---A Retrospective View, Systems Engineering
1 (1998), no. 4, 258-266.

Britton, C. and Doake, J., Software System Development, McGraw-Hill Educa-
tion (UK) Ltd., 2003.

Brodie, E. J., Software Engineering An Object-Oriented Perspective, John
Wiley & Sons, Inc., 2001.

Brooks, B. and Mawby, D., 1998, Better Decision Making for Complex Engi-
neering Projects, proceedings of Fourth Annual Symposium of the
INCOSE-UK.

Brooks, F., The Mythical Man-Month Essays on Software Engineering, Re-
printed with corrections, Addison-Wesley Publishing Company,
1982.

Bruno, M. E. and Mar, B. W., 1997, Management of the Systems Engineering
Discipline, proceedings of the 7th Annual Symposium of the Interna-
tional Council on Systems Engineering.

Budd, T., An Introduction to Object-Oriented Programming, Addison-Wesley,
1996.

References

482

Buede, D. M., The Engineering Design of Systems, John Wiley & Sons, Inc.,
2000.

Bungay, S., The Most Dangerous Enemy, Aurum Press, London, England,
2000.

Buren, J. V. and Cook, D. A., Experiences in the Adoption of Requirements
Engineering Technologies, Crosstalk - The Journal of Defense Soft-
ware Engineering (1998), no. December.

Burke, G. D., Harrison, M. J., Fenton, R. E. and Carlock, P. G., 2000, An ap-
proach to develop a systems engineering curriculum for human cap-
ital and process improvement, proceedings of the10th Annual In-
ternational Symposium of the INCOSE.

Caltrans, System Engineering Guidebook for Intelligent Transportation Sys-
tems Version 2.0, California Department of Transportation, Division
of Research and Innovation, 2007.

Campbell, J. W., "Editorial," Analog, 1960.
CareerOneStop, Using Competency Models, 2011,

http://www.careeronestop.org/competencymodel/learncm.aspx,
accessed on 11 November 2011.

Carroll, L., Through the Looking Glass, 1872.
Carson, R. S., 2001, Keeping the Focus During Requirements Analysis, pro-

ceedings of the 11th International Symposium of the International
Council on Systems Engineering.

Chamberlain, R. G. and Shishko, R., 1991, Fundamentals of Systems Engineer-
ing at NASA, proceedings of INCOSE/ASEM Proceedings.

Chang, C. K., Cleland-Huang, J., Hua, S. and Kuntzmann-Combelles, A., "Func-
tion-Class Decomposition", A Hybrid Software Engineering Method,
IEEE Computer (2001), 87-93.

Chang, C. K. and Hua, S., 1994, A New Approach to Module-Oriented Design
of Object Oriented Software, proceedings of 18th International
Computer Software and Applications Conference, (COMPSAC94).

CHAOS, The Chaos study, The Standish Group, 1995,
http://www.standishgroup.com/chaos.html, accessed on March 19,
1998.

---, Chaos Chronicles, The Standish Group, 2004.
Chapanis, A., "Human Engineering," Operations Research and Systems Engi-

neering, C. D. Flagle, W. H. Huggins and R. H. Roy (Editors), Johns
Hopkins Press, Baltimore, 1960.

Chapman, W. L., Bahill, A. T. and Wymore, A. W., Engineering Modeling and
Design, CRC Press, Boca Raton, Fla., 1992.

Chase, R. B., Aquilano, N. J. and Jacobs, F. R., Productions and Operations
Management, Irwin McGraw-Hill, 1998.

Chase, R. B. and Stewart, D. M., Make Your Service Fail-Safe, Sloan Manage-
ment Review 35 (1994), no. 3, 35-44.

References

483

Checkland, P., Systems Thinking, Systems Practice, vol. Chichester, John
Wiley & Sons, 1991.

Checkland, P. and Holwell, S., Information, Systems and Information Systems:
making sense of the field, vol. Chichester, John Wiley & Sons, 1998.

Checkland, P. and Scholes, J., Soft Systems Methodology in Action, John
Wiley & Sons, 1990.

Chestnut, H., Systems Engineering Tools, John Wiley & Sons, Inc., New York,
1965.

Churchman, C. W., The Systems Approach and its Enemies, Basic Books, Inc.,
New York, 1979.

Churchman, C. W., Ackoff, R. L. and Arnoff, E. L., Introduction to Operations
Research, Wiley, 1957.

Clausing, D., Total Quality Development, ASME Press, 1994.
Clausing, D. and Cohen, L., 1994, Recent Developments in QFD in the United

States, proceedings of Institution of Mechanical Engineering Con-
ference.

CMM, Carnegie Mellon University, The Capability Maturity Model: Guidelines
for Improving The Software Process, Addison-Wesley, 1995.

Cook, S. C., 2000, What the Lessons Learned from Large, Complex, Technical
Projects Tell us about the Art of Systems Engineering, proceedings
of the International Symposium of the INCOSE.

---, 2001, On the Acquisition of Systems of Systems, proceedings of the 11th
annual Symposium of the INCOSE.

---, Principles of Systems Engineering - Course Notes, Systems Engineering
and Evaluation Centre, University of South Australia, Adelaide,
2003.

Cook, S. C., Kasser, J. E. and Asenstorfer, J., 2001, A Frame-Based Approach
to Requirements Engineering, proceedings of 11th International
Symposium of the INCOSE.

Cook, S. C., Kasser, J. E. and Ferris, T. L. J., 2003, Elements of a Framework for
the Engineering of Complex Systems, proceedings of the 9th ANZSYS
Conference.

Costello, R. B., Bolstering Defense Industrial Competitiveness: Preserving Our
Heritage, the Industrial Base Securing Our Future, Office of the Un-
dersecretary of Defence (Acquisition), 1988.

Covey, S. R., The Seven Habits of Highly Effective People, Simon & Schuster,
1989.

Cox, C., Welcoming Immigrants to a Diverse America: English as our Com-
mon Language of Mutual Understanding, 1996,
http://policy.house.gov/documents/statements/english.htm, ac-
cessed on 10 August 2000.

Crosby, P. B., Quality is Free, McGraw-Hill, 1979.
Crosby, P. B., The Art of Getting Your Own Sweet Way, McGraw-Hill Book

Company, 1981.

References

484

---, Completeness: Quality for the 21st Century, Dutton, New York, 1992.
D'Souza, D. F. and Willis, A. C., Objects, Components, and Frameworks With

UML: The Catalysis Approach, Addison-Wesley, 1998.
Daniels, J., Bahill, T. and Botta, R., "A Hybrid Requirements Capture Process,"

the 15th annual International Symposium of the INCOSE, Rochester,
NY., 2005.

Darke, P. and Shanks, G. G., User Viewpoint Modelling: understanding and
representing user viewpoints during requirements definition, Infor-
mation Systems Journal 7 (1997), no. 3, 213-219.

DAU, Defense Acquisition University (DAU). SPRDE-SE/PSE competency
model, 4/14/10 version, 2010,
https://acc.dau.mil/CommunityBrowser.aspx?id=315691&lang=en-
US, accessed on

Davidow, W. H. and Malone, M. S., The Virtual Corporation, Edward Burlin-
game Books/Harper Business, 1992.

Davies, J., 1998, Making Choices at the Right Time: Producing Better Sys-
tems, proceedings of Fourth Annual Symposium of the INCOSE-UK.

Davis, S., 2003, FCS System of Systems' Engineering and Integration, pro-
ceedings of NDIA Systems Engineering Conference.

Deevy, E., Creating the Resilient Organization. A RapidResponse Manage-
ment Program, Prentice Hall Inc., New Jersey, 1995.

DeMarco, T., Why Does Software Cost So Much? And Other Puzzles of the
Information Age, Dorset House Publishing, 1995.

DeMarco, T. and Lister, T., Peopleware Productive Projects and Teams, Dor-
set House Publishing, 1999.

Deming, W. E., Out of the Crisis, MIT Center for Advanced Engineering Study,
1986.

Deming, W. E., The New Economics for Industry, Government, Education, MIT
Center for Advanced Engineering Study, 1993.

Dennison, K., 2000, Integration or Partnership - Trends in UK MoD Air System
Test and Evaluation, proceedings of Fourth Test and Evaluation In-
ternational Aerospace Forum.

Denzler, D. and Kasser, J. E., 1995, Designing Budget Tolerant Systems, pro-
ceedings of the 5th Annual International Symposium of the NCOSE.

DERA, DERA Systems Engineering Practices Reference Model, DERA/LS(SEC-
FH)/PROJ/018/G01, Defence Evaluation and Research Agency
(DERA), 1997.

---, Systems Engineering has a Promising Future, DERA News (1998), no. Jan-
uary.

Dewitz, S. D., Systems Analysis and Design and the Transition to Objects, Ir-
win/McGraw Hill, 1996.

DOD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Pro-
grams (MDAPS) and Major Automated Information System (MAIS)
Acquisition Programs, US Department of Defense, 2002.

References

485

DOD, DoD Guide to Integrated Product and Process
Development (Version 1.0),, DOD, 1996.
---, National Security Space Strategy Unclassified Summary, United States

Department of Defense, 2011.
DOD IPPD, DoD Integrated Product and Process Development Handbook,

Office of the Undersecretary of Defense (Acquisition and Technolo-
gy), Washington, DC., 1998.

DoDAF, DoD Architecture Framework Version 1.0, 9 February 2004, 2004.
Dolan, T., Best Practices In Process Improvement, Quality Progress (2003),

no. August 2003, 23-28.
Donaldson, S. E. and Siegel, S. G., Cultivating Successful Software Develop-

ment A Practitioner's View, Prentice Hall PTR, Upper Saddle River,
New Jersey, 1997.

Dorfman, M. and Thayer, R. H., System and Software Requirements Engineer-
ing, IEEE Computer Society Press, 1990.

Dreyfus, H. and Dreyfus, S., Mind over machine: The power of human intui-
tion and expertise in the era of the computer, Free Press, New York,
1986.

Drucker, P. F., Management: Tasks, Responsibilities, Practices, Harper & Roe,
New York, 1973.

---, Managing in Turbulent Times, Harper Row Publishers, 1980.
---, Innovation and Entrepreneurship, Harpercollins, 1985.
Drucker, P. F., Managing for the Future. The 1990s and Beyond, Truman Tal-

ley Books/Plume, New York, 1993.
Drucker, P. F., Managing in a time of Great Change, Truman Talley

Books/Dutton, New York, 1995.
DSMC, Systems Engineering Management Guide, vol. May 1996, Defence

Systems Management College, 1996.
Eckman, D. P. (Editor), Systems: Research and Design, John Wiley & Sons,

Inc., 1961.
EIA 632, "EIA 632 Standard: Processes for engineering a system," 1994.
Eichhorn, R., Developing thinking skills: critical thinking at the army man-

agement staff college, 2002,
http://www.amsc.belvoir.army.mil/roy.html, accessed on April 11,
2008.

Eisner, H., Computer Aided Systems Engineering, Prentice Hall, 1988.
---, Essentials of Project and Systems Engineering Management, John Wiley &

Sons, Inc., New York, 1997.
El_Emam, K. and Hoeltje, D., Qualitative Analysis of a Requirements Change

Process, Empirical Software Engineering 2 (1997), 143-207.
El_Emam, K. and Madhavji, N., An Instrument for Measuring the Success of

the Requirements Engineering Process in Information Systems De-
velopment, Empirical Software Engineering 1 (1996), 201-240.

References

486

Emes, M., Smith, A. and Cowper, D., Confronting an identity crisis - How to
brand systems engineering, Systems Engineering 8 (2005), no. 2,
164-186.

Endres, A. and Rombach, D., A Handbook of Software and Systems Engineer-
ing, Pearson Education Ltd., 2003.

Ennis, M. R., Competency Models: A Review of the Literature and The Role of
the Employment and Training Administration (ETA), U. S. Depart-
ment of Labor, 2008,
http://www.careeronestop.org/competencymodel/info_documents
/OPDRLiteratureReview.pdf, accessed on 8 September 2011.

ETA, General Competency Model Framework, The Employment and Training
Administration, 2010,
http://www.careeronestop.org/competencymodel/pyramid.aspx,
accessed on 9 September 2011.

Evans, D. C., Systems Engineering Lessons Learned (SELL), 1989,
http://evansopticalengineering.com/Page00/sysengll.htm, accessed
on 6 September 2011.

Evans, R. P., 1996, Engineering of Computer-based Systems (ECBS) Three
New Methodologies--Three New Paradigms, proceedings of the 6th
International Symposium of the INCOSE.

Fabrycky, W., "International Systems Engineering Programs," the INCOSE
Education and Research Working Group Meeting, 29 June 2003,
Washington, USA, 2003.

Fanmuy, G., 2004, Best practices for drawing up a requirements baseline -
P192, proceedings of the 14th International Symposium of the
INCOSE.

Farnham, D. T., Executive Statistical Control, vol. 6, Industrial Extension Insti-
tute, New York, 1920.

Faulconbridge, R. I. and Ryan, M. J., 1999, A Framework for Systems Engi-
neering Education, proceedings of Systems Engineering Test and
Evaluation (SETE) Conference.

---, Managing Complex Technical Projects: A Systems Engineering Approach,
Artech House, Boston, 2003.

Fayol, H., General and Industrial Management, Sir Isaac Pitman and Sons,
Ltd., London, 1949.

Feigenbaum, D. S., Systems Engineering - A Major New Technology, Industri-
al Quality Control 20 (1963), no. September 1963, 9-13.

Fielden, G. B. R., ('The Fielden Report') Engineering Design, Her Majesty's
Stationary Office, 1963.

Fisher, J., 1996, Defining the Roles and Responsibilities of the Systems Engi-
neering Organization/Team, proceedings of the 6th Annual Sympo-
sium of the International Council on Systems Engineering.

Flood, R. L. and Jackson, M. C., Creative Problem Solving, Wiley, 1991.

References

487

Florida, Writing a Project Systems Engineering Management Plan, Florida
Department of Transportation Traffic Engineering and Operations
Office, 2006,
http://www.floridaits.com/SEMP/Files/PDF_Report/060929-
PSEMP-V4.pdf, accessed on 14 June 2010.

FM_770-78, Field Manual: System Engineering, Headquarters, Department
of the Army, 1979.

Ford, H. and Crowther, S., My Life and Work, Doubleday Page & Company,
New York, 1922.

Forsberg, K. and Mooz, H., 1991, The Relationship of System Engineering to
the Project Cycle, proceedings of Annual Conference of the National
Council on Systems Engineering, National Council on Systems Engi-
neering.

Forsberg, K., Mooz, H. and Cotterman, H., Visualising Project Management,
John Wiley & Sons, Inc., 2000.

Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

Frank, M., Knowledge, Abilities, Cognitive Characteristics and Behavioral
Competences of Engineers with High Capacity for Engineering Sys-
tems Thinking (CEST), The INCOSE Journal of Systems Engineering 9
(2006), no. 2, 91-103.

Frank, M., Assessing the interest for systems engineering positions and the
Capacity for Engineering Systems Thinking (CEST), Systems Engi-
neering 13 (2010), no. 2.

Frank, M. and Waks, S., Engineering systems thinking: A multifunctional defi-
nition, Systemic Practice and Action Research 14 (2001), no. 3, 361-
379.

Friedman, G. J., On the Unification of Systems Engineering, INCOSE INSIGHT 8
(2006), no. 2, 16-17.

Frosch, R. A., A new look at systems engineering, IEEE Spectrum (1969), no.
September, 25.

Frosh, R. A., A new look at systems engineering, IEEE Spectrum (1969), no.
September.

FS-1037C, Federal Standard 1037C, 1996, http://www.its.bldrdoc.gov/fs-
1037/fs-1037c.htm, accessed on July 1, 2004.

Gabb, A., 2001, Front-end Operational Concepts - Starting from the Top, pro-
ceedings of The 11th Annual Symposium of the INCOSE.

Gabb, A., Caple, G., Haines, D., Lamont, D., Davies, P., Hall, A., Van Gaasbeek,
J., Eppig, S., Jones, D. and Vietinghoff, B., 2001, Requirements Cate-
gorization, proceedings of the 11th Annual Symposium of the
INCOSE.

Gabbar, H. A., Shimada, Y. and Sukuzi, K., Object Interface System Using a
Plan Object-Oriented Model, Systems Engineering 4 (2001), no. 3.

References

488

Gallagher, B., Wilson, O. R. and Levinson, J. C., Guerrilla Selling, Houghton
Mifflin Company, 1992.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns, Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

GAO, DEFENSE ACQUISITIONS Major Weapon Systems Continue to Experi-
ence Cost and Schedule Problems under DOD’s Revised Policy, GAO,
2006.

Gardiner, G., Concurrent and Systems Engineering same thing, different
name, or are they both just new product introduction?, IEE Engi-
neering Management Journal (1996), no. February.

Gavito, V., Verma, D., Dominick, P., Pennotti, M., Giffin, R., Barrese, T. and et
al., Technical leadership development program, Systems Engineer-
ing Research Center (SERC), Stevens Institute of Technology, Hobo-
ken, NJ., 2010.

GDRC, The Problem Solving Process, 2009,
http://www.gdrc.org/decision/problem-solve.html, accessed on 11
Jan 2009.

Gelbwaks, N. L., AFSCM 375-5 as a Methodology for System Engineering,
Systems Science and Cybernetics, IEEE Transactions on 3 (1967), no.
1, 6-10.

Gelosh, D., 2008, Development and Validation of a Systems Engineering
Competency Model, proceedings of 11th NDIA Systems Engineering
Conference.

George, C. S., Jr., The History of Management Thought, Prentice-Hall Inc.,
1972.

Gharajedaghi, J., System Thinking: Managing Chaos and Complexity, Butter-
worth-Heinemann, Boston, 1999.

Gibbons, P. J., 2001, A Case Study in the Application of UML and OOA/D in an
Information Management Program, proceedings of The 11th Annu-
al Symposium of the INCOSE.

Glass, R. L., Building Quality Software, Prentice Hall, Englewood Cliffs, NJ.,
1992.

Goldberg, R. and Assaraf, S., 2010, System Engineering Process Improvement
using the CMMI in Large Space Programs, proceedings of
13thAnnual NDIA System Engineering Conference 25-28 Oct.

Goldratt, E. M., Theory of Constraints, North River Press, 1990.
Goldsmith, R. F., Discovering Real Business Requirements for Software Pro-

ject Success, Artech House Inc., Boston, MA, 2004.
Goleman, D., Emotional Intelligence, 1995.
Goode, H. H. and Machol, R. E., Systems Engineering, McGraw-Hill, 1959.
Gooding, R. Z., Systems Engineering: A problem solving approach to improv-

ing program performance, Evaluation and Program Planning 3
(1980), 95-103.

References

489

Gordon G. et al., A Contingency Model for the Design of Problem Solving Re-
search Pro-gram, Milbank Memorial Fund Quarterly (1974), 184-
220.

Gosling, W., The Design of Engineering Systems, Wiley, New York, 1962.
Gouillart, F. J. and Kelly, J. N., Transforming the Organisation, McGraw-Hill

Inc., 1995.
Guo, J., "Incorporating Multidisciplinary Design Optimization into Spacecraft

Systems Engineering," 8th Annual Conference on Systems Engineer-
ing Research, Hoboken, NJ., 2010.

Hall, A. D., A Methodology for Systems Engineering, D. Van Nostrand Com-
pany Inc., Princeton, NJ, 1962.

---, Metasystems Methodology. a new synthesis and unification, Pergamon
Press, Oxford, England., 1989.

Hall, C. S. and Lindzey, G., Theories of Personality, John Wiley & Sons, 1957.
Hambleton, K. G., "Systems Engineering Principles," Lecture Notes, University

College London, 1999.
Hammer, M. and Champy, J., Reengineering the Corporation, HarperCollins,

New York, 1993.
Hari, A., Kasser, J. E. and Weiss, M. P., How lessons learnt from creating re-

quirements for complex systems using QFD led to the evolution of a
process for creating quality requirements for complex systems, Sys-
tems Engineering: The Journal of the International Council on Sys-
tems Engineering 10 (2007), no. 1, 45-63.

Hari, A., Weiss, M. and Zonnenshain, A., 2004, ICDM - An Integrated Meth-
odology for the Conceptual Design of New Systems, proceedings of
System Engineering Test and Evaluation Conference SETE 2004.

Harrington, H. J., Total Improvement Management the next generation in
performance improvement, McGraw-Hill, 1995.

---, Was W. Edwards Deming wrong?, Measuring Business Excellence 4
(2000), no. 3, 35 - 41.

Harris, D. D., 2000, Supporting Human Communication in Network-based
Systems Engineering, proceedings of 2nd European Systems Engi-
neering Conference.

Hart, C. W. L. and Bogan, C. E., The Baldridge: what it is, how it's won, how to
use it to improve quality in your company, McGraw-Hill, Inc., 1992.

Haskins, C. (Editor), Systems Engineering Handbook: A Guide for Life Cycle
Processes and Activities, Version 3, The International Council on Sys-
tems Engineering, 2006a.

--- (Editor), Systems Engineering Handbook: A Guide for Life Cycle Processes
and Activities, Version 3.1. Revised by K. Forsberg and M. Krueger,
The International Council on Systems Engineering, San Diego, CA.,
2006b.

--- (Editor), Systems Engineering Handbook: A Guide for Life Cycle Processes
and Activities, Version 3.2.1. Revised by K. Forsberg and M. Krueger,

References

490

The International Council on Systems Engineering, San Diego, CA.,
2011.

Hately, D. J. and Pirbhai, I. A., Strategies for Real-time systems Specification,
Dorset House Publishing, New York, NY, 1987.

Hauser, J. R. and Clausing, D., The House of Quality, Harvard Business Review
May-June (1988), 63-65.

Hawley, J. K., Where's the Q in TQM, Quality Progress (1995), no. October,
63-64.

Hill, J. D. and Warfield, J. N., Unified Program Planning, IEEE Transactions on
Systems, Man, and Cybernetics SMC-2 (1972), no. 5, 610-621.

Hiremath, M., Systems Engineering in Acquisition Strategy: Change Needed,,
INCOSE Insight 11 (2008), no. 5, 32-33.

Hitchins, D. K., Putting Systems to Work, John Wiley & Sons, Chichester, Eng-
land, 1992.

Hitchins, D. K., 1998, Systems Engineering…In Search of the Elusive Optimum,
proceedings of Fourth Annual Symposium of the INCOSE-UK.

---, World Class Systems Engineering - the five layer Model, 2000,
http://www.hitchins.net/5layer.html, accessed on 3 November
2006.

---, Advanced Systems Thinking, Engineering and Management, Artech
House, 2003.

Hitchins, D. K., Systems Engineering. A 21st Century Systems Methodology,
John Wiley & Sons Ltd., Chichester, England, 2007.

Holt, J., UML for Systems Engineering: watching the wheels, The Institute of
Electrical Engineers, 2001.

Honour, E. C. and Valerdi, R., 2006, Advancing an Ontology for Systems Engi-
neering to Allow Consistent Measurement, proceedings of Confer-
ence on Systems Engineering Research.

Hooks, I., 1993, Writing Good Requirements, proceedings of Proceedings of
the 3rd NCOSE International Symposium.

---, 1994, Writing Good Requirements, proceedings of Proceedings of the 3rd
NCOSE International Symposium.

Hopkins, F. W. and Rhoads, R. P., 1998, Object Oriented Systems Engineering
- An Approach, proceedings of The 8th International INCOSE Sym-
posium.

Howard, R., "The SCADC project," J. E. Kasser (Editor), Adelaide, Australia,
2001.

Hudson, S., Systems Engineering Competencies Framework, INCOSE UK,
2006.

Hull, M. E. C., Jackson, K. and Dick, A. J. J., Requirements Engineering, Spring-
er, 2002.

Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, Read-
ing, MA, 1995.

Huygens, C., Treatise on Light, 1690.

References

491

Hyer, S. A., 1997, An Effective Approach To System Integration: A Compre-
hensive Checklist, proceedings of The 7th Annual International
Symposium of the INCOSE.

IEEE 610, "IEEE Standard Glossary of Software Engineering Terminology,"
IEEE, 1990.

IEEE 1220, "Standard 1220 IEEE Standard for Application and Management
of the Systems Engineering Process," 1998.

IEEE CCCC, IEEE Computer Society Computing Curriculum - software engi-
neering --- Public Draft 1 --- (July 17, 2003) Software Engineering
Education Knowledge Software, 2003.

INCOSE, What is systems engineering?, 2000, ,
(http://www.incose.org/whatis.html, accessed on 9th November
2000.

---, Systems Engineering Body of Knowledge, 2002.
---, Certification Examination, 2008,

http://www.incose.org/educationcareers/certification/examination
.aspx, accessed on 19 February 2012.

INCOSE Fellows, A Consensus of the INCOSE Fellows, 2009,
http://www.incose.org/practice/fellowsconsensus.aspx, accessed
on 18 March 2009.

INCOSE UK, Systems Engineering Competencies Framework, INCOSE UK,
2010.

Jackson, M. C. and Keys, P., Towards a System of Systems Methodologies,
Journal of the Operations Research Society 35 (1984), no. 6, 473-
486.

Jacobs, S., 1999, Introducing Measurable Quality Requirements: A Case
Study, proceedings of the IEEE International Symposium on Re-
quirements Engineering.

Jacobson, I., Christerson, M., Jonsson, P. and Ivergarrd, G., Object-Oriented
Software Engineering A Use Case Driven Approach, Addison Wesley,
1993.

Jain, R. and Verma, D., Proposing a Framework for a Reference Curriculum
for a Graduate Program in Systems Engineering, The International
Council on Systems Engineering, 2007.

Jansma, P. A. T. and Jones, R. M., 2006, Advancing the Practice of Systems
Engineering at JPL, proceedings of IEEE Aerospace Conference.

Jarke, M., 1996, Meta Models for Requirements Engineering, proceedings of
Tenth Knowledge Acquisition for Knowledge-Based Systems Work-
shop.

JAXA, Basics of Systems Engineering (draft) , Version 1B, 2007.
Jenkins, G. M., "The Systems Approach," Systems Behaviour, J. Beishon and

G. Peters (Editors), Harper and Row, London, 1969, p. 82.

References

492

Jenkins, S., 2005, A Future for Systems Engineering Tools, proceedings of PDE
2005, The 7th NASA-ESA Workshop on Product Data Exchange
(PDE).

Johnson, E. A., "The Executive, the Organisation and Operations Research,"
Operations Research for Management, Volume 1., J. F. McCloskey
and F. N. Trefethen (Editors), The Johns Hopkins Press, Baltimore,
1954.

Johnson, R. A., Kast, F. W. and Rosenzweig, J. E., The Theory and Manage-
ment of Systems, McGraw-Hill, New York, 1963.

Johnson, S. B., Three Approaches to Big Technology: Operations Research,
Systems Engineering, and Project Management, Technology and
Culture (1997), 891-919.

Jones, J. C., Design Methods: Seeds of human futures, Wiley-Interscience,
1970.

Jorgensen, R., The Oxymoron of Use Case Requirements, INSITE 4 (2001), no.
2.

Jorgensen, R. W., 1998, Untangling the Twists in Requirements Analysis, pro-
ceedings of the 8th INCOSE International Symposium.

Juran, J. M., Juran on Planning for Quality, The Free Press, 1988.
Kanter, R. M., Attack on Pay, Harvard Business Review (1987).
Kasser, J. E., 1984, A Distributed Control System for a Solar Collector Field,

proceedings of Energy 84.
---, Applying Total Quality Management to Systems Engineering, Artech

House, Boston, 1995.
---, 1996, Systems Engineering: Myth or Reality, proceedings of The 6th In-

ternational Symposium of the INCOSE.
---, "The Determination and Mitigation of Factors Inhibiting the Creation of

Strategic Alliances of Small Businesses in the Government Contract-
ing Arena," The Department of Engineering Management, The
George Washington University, Washington DC, 1997.

---, 1999, Using Organizational Engineering to Build Defect Free Systems, On
Schedule and Within Budget, proceedings of PICMET.

---, 2000a, A Framework for Requirements Engineering in a Digital Integrated
Environment (FREDIE), proceedings of Proceedings of the Systems
Engineering, Test and Evaluation Conference.

---, 2000b, How Collaboration via the World Wide Web Can Provide a Global
Perspective and Truly Provide the Student With a World Class Edu-
cation, proceedings of Distance Education: An Open Question?

---, 2000c, A Web Based Asynchronous Virtual Conference: A Case Study, pro-
ceedings of The INCOSE - Mid-Atlantic Regional Conference.

---, "The Cataract Methodology for Systems and Software Acquisition," SETE
2002, Sydney Australia, 2002a.

References

493

---, 2002b, Does Object-Oriented System Engineering Eliminate the Need for
Requirements?, proceedings of the 12th International Symposium
of the International Council on Systems Engineering.

---, 2002c, A Prototype Tool for Improving the Wording of Requirements, pro-
ceedings of the 12th International Symposium of the INCOSE.

---, 2002d, Systems Engineering: An Alternative Management Paradigm, pro-
ceedings of The Systems Engineering Test and Evaluation Confer-
ence.

---, The First Requirements Elucidator Demonstration (FRED) Tool, Systems
Engineering: The Journal of the International Council on Systems
Engineering, 7 (2004), no. 3.

---, 2006, Reducing the cost of doing work by an order of magnitude (by ap-
plying systems thinking to systems engineering), proceedings of
21st Centre of Excellence Workshop: Challenges for life-based sys-
tems development.

---, 2009, Active Brainstorming: - A systemic and systematic approach for
idea generation, proceedings of the 19th International Symposium
of the International Council on Systems Engineering.

---, 2010, Holistic Thinking and How It Can Produce Innovative Solutions to
Difficult Problems, proceedings of the 7th bi-annual European Sys-
tems Engineering Conference (EuSEC).

Kasser, J. E., "An application of Checkland’s soft systems methodology in the
context of systems thinking," the 5th Asia-Pacific Conference on Sys-
tems Engineering (APCOSE 2011), Seoul, Korea, 2011a.

Kasser, J. E., "Applying Holistic Thinking to Improving Your Sex Life," the Sixth
Israeli Conference on Systems Engineering, Hertzlia, 2011b.

Kasser, J. E., "Complex solutions for complex problems," Third International
Engineering Systems Symposium (CESUN), Delft, Holland, 2012.

---, Holistic Thinking: creating innovative solutions to complex problems, Cre-
atespace, 2013.

Kasser, J. E. and Cook, S. C., 2002, The Communications Requirements Evalu-
ation & Assessment Prototype (CREAP), proceedings of the 12th in-
ternational symposiunm of the INCOSE.

---, 2003, Using a Rapid Incremental Solution Construction Approach to Max-
imise the Completeness and Correctness of a Set of Requirements
for a System, proceedings of Proceedings of the 13th International
Symposium of the International Council on Systems Engineering
(INCOSE).

Kasser, J. E., Cook, S. C., Scott, W., Clothier, J. and Chen, P., 2002, Introducing
a Next Generation Computer Enhanced Systems Engineering Tool:
The Operations Concept Harbinger, proceedings of SETE 2002.

Kasser, J. E., Frank, M. and Zhao, Y. Y., 2010, Assessing the competencies of
systems engineers, proceedings of the 7th bi-annual European Sys-
tems Engineering Conference (EuSEC).

References

494

Kasser, J. E. and Hitchins, D. K., A framework for a systems engineering body
of knowledge, 0.6, Report to the Fellows Committee, International
Symposium of the International Council on Systems Engineering,
2009.

Kasser, J. E., Hitchins, D. K. and Huynh, T. V., 2009, Reengineering Systems
Engineering, proceedings of the 3rd Annual Asia-Pacific Conference
on Systems Engineering (APCOSE).

Kasser, J. E., John, P., Tipping, K. and Yeoh, L. W., 2008, Systems engineering
a 21st century introductory course on systems engineering: the Ser-
aswati Project, proceedings of the 2nd Asia Pacific Conference on
Systems Engineering.

Kasser, J. E., Kaffle, S. and Saha, P., 2007, Applying FRAT to improve systems
engineering courseware: Project Review, proceedings of SEEC Re-
search Group, SESA-South Australia and INCOSE-Australia joint
meeting.

Kasser, J. E. and Mackley, T., 2008, Applying systems thinking and aligning it
to systems engineering, proceedings of the 18th INCOSE Interna-
tional Symposium.

Kasser, J. E. and Mirchandani, C. J., 2005, The MSOCC Data Switch Replace-
ment: A Case Study in Elicitating and Elucidating Requirements, pro-
ceedings of The 15th International Symposium of the International
Council on Systems Engineering (INCOSE).

Kasser, J. E. and Schermerhorn, R., 1994a, Determining Metrics for Systems
Engineering, proceedings of The 4th Annual International Symposi-
um of the NCOSE.

---, 1994b, Gaining the Competitive Edge through Effective Systems Engineer-
ing, proceedings of The 4th Annual International Symposium of the
NCOSE.

Kasser, J. E., Scott, W., Tran, X.-L. and Nesterov, S., 2006, A Proposed Re-
search Programme for Determining a Metric for a Good Require-
ment, proceedings of Conference on Systems Engineering Research.

Kasser, J. E., Sitnikova, E., Tran, X.-L. and Yates, G., 2005, Optimising the Con-
tent and Delivery of Postgraduate Education in Engineering Man-
agement for Government and Industry, proceedings of the Interna-
tional Engineering Management Conference (IEMC).

Kasser, J. E., Tran, X.-L. and Matisons, S., 2003, Prototype Educational Tools
for Systems and Software (PETS) Engineering, proceedings of Pro-
ceedings of the AAEE Conference.

Kast, F. E. and Rosenzweig, J. E., Organization and Management A Systems
and Contingency Approach, McGraw-Hill Book Company, 1979.

Kemp, L. L., Nidiffer, K. E., Rose, L. C., Small, R. and Stankowsky, M.,
Knowledge Management: Insights from the Trenches, IEEE Software
(2001), no. November/December, 66-68.

References

495

Kendall, K. E. and Kendall, J. E., Systems Analysis and Design, Prentice Hall,
Upper Saddle River, NJ, 1997.

Kezsbom, D. S., Schilling, D. L. and Edward, K. A., Dynamic Project Manage-
ment. A practical guide for managers and engineers, John Wiley &
Sons, New York, 1989.

Kirton, M. J., Adaptors and Innovators: Styles of Creativity and Problem Solv-
ing, Routledge, London, 1994.

Kline, S. J., Conceptual Foundations for Multidisciplinary Thinking, Stanford
University Press, Stanford, 1995.

Kossiakoff, A. and Sweet, W. N., Systems Engineering: Principles and practice,
John Wiley & Sons Inc., 2003.

Kossmann, M., Odeh, M., Gillies, A. and Ingamells, C., 2007, ‘Tour d’horizon’
in Requirements Engineering - Areas left for exploration, proceed-
ings of the 17th International Symposium of the INCOSE.

Kotonya, G. and Summerville, I., Requirements Engineering processes and
techniques, John Wiley & Sons, Chichester, 2000.

Kuhn, T. S., The Structure of Scientific Revolutions, The University of Chicago
Press, 1970.

Lagakos, V., Kaisar, E. I. and Austin, M., 2001, Object Modeling for the Man-
agement of Narrow Passageways in Transportation Systems, pro-
ceedings of The 11th Annual Symposium of the INCOSE.

Lander, S. E., Issues in Multiagent Design Systems, IEEE Expert (1997), no. 12
Issue: 2, March-April.

LaPlue, L., Garcia, R. and Rhodes, R., 1995, A Formal Method for Rigorous
Requirements Definition, proceedings of Fifth Annual Symposium of
the NCOSE.

LaRocca, M., 1999, Career and Competency Pathing: The Competency Model-
ing Approach, proceedings of Linkage Conference on Emotional In-
telligence.

Lawler III, E., Motivation in Work Organizations, Brooks/Cole Publishing
Company, 1973.

Lee, J. Y. and Park, Y. W., 2004, Requirement Architecture Framework (RAF),
proceedings of the 14th International Symposium of the INCOSE.

Leveson, N., The Role of Software in Spacecraft Accidents, AIAA Journal of
Spacecraft and Rockets 41 (2004), no. 4.

Lewicki, R. J. and Litterer, J. A., Negotiation., IRWIN, 1985.
Lewis, R. O., Independent Verification & Validation, John Wiley & Sons, 1992.
Love, T., 2003, A Fork in the Road: Systems and Design, proceedings of 9th

ANZSYS Conference.
Luzatto, M. C., The Way of God, Feldheim Publishers, 1999, New York and

Jerusalem, Israel, circa 1735.
Lykins, H., Friedenthal, S. and Meilich, A., 2000, Adapting UML for an Object

Oriented Systems Engineering Method (OOSEM), proceedings of The
10th Annual Symposium of the INCOSE.

References

496

M'Pherson, P., Systems engineering: A proposed definition, IEE Proc 133
(1986), no. September.

Mackey, W. F. and Mackey, W. F., Jr., 1994, A Systems Engineering Approach
to Highway Design, proceedings of 4th Annual International Sympo-
sium of the NCOSE.

Maier, M. K. and Rechtin, E., The Art of Systems Architecting, CRC Press,
2000.

Maimonides, M., The Guide for the Perplexed translated by M Friedlander,
Dover Publications, circa 1200.

Mar, B., Commentary on the Consensus of INCOSE Fellows, 2009a,
http://www.incose.org/practice/fellowsconsensus.aspx, accessed
on 16 April 2012.

Mar, B., Commentary on the Consensus of INCOSE Fellows, INCOSE, 2009b,
http://www.incose.org/practice/fellowsconsensus.aspx, accessed
on 8 November 2009.

Mar, B. and Morais, B., 2002, FRAT A Basic Framework for Systems Engineer-
ing, proceedings of 12th annual International Symposium of the In-
ternational Council on Systems Engineering.

Mar, B. W., Systems Engineering Basics, Systems Engineering: The Journal of
INCOSE 1 (1994), no. 1, 7-15.

Marcotty, M., Software Implementation, Prentice Hall, 1991.
Martin, J. N., 1994, The PMTE Paradigm: Exploring the Relationship Between

Systems Engineering Processes and Tools, proceedings of 4th Annu-
al International Symposium of the National Council on Systems En-
gineering, INCOSE.

Martin, J. N., 1996, On The Nature of Integration: An Essential Task in the
Engineering of Systems, proceedings of 6th International Symposi-
um of the International Council on Systems Engineering (INCOSE).

Martin, J. N., Systems Engineering Guidebook: A process for developing sys-
tems and products, CRC Press, 1997.

Martin, N. G., 2005, Work Practice in Research: A Case Study, proceedings of
the 14th International Symposium of the INCOSE.

Maslow, A. H., A Theory of Human Motivation, Harper & Row, 1954.
---, The Psychology of Science, Harper and Row, 1966.
---, Toward a Psychology of Being, Van Nostrand, 1968.
---, Motivation and Personality, Harper & Row, 1970.
Mason, G. A., Sherwood, W. B., McGrath, W. E., Silva, F. G., Rutter, C. K. and

Spence, J. P., 1999, Application of System Engineering Principles in
the Development of the Advanced Photo System, proceedings of the
9th INCOSE International Symposium.

Matchett, E. and Briggs, A. H., "Practical Design Based on Method," The De-
sign Method, S. Gregory (Editor), Butterworths, London, 1966.

References

497

McCloskey, J. F., "Case Histories in Operations Research," Operations Re-
search for Management, Volume 1., J. F. McCloskey and F. N. Tre-
fethen (Editors), The Johns Hopkins Press, Baltimore, 1954.

McConnell, G. R., 2002, Emergence : A Partial History of Systems Thinking,
proceedings of the 12th international symposiunm of the INCOSE.

McGregor, D., The Human Side of Enterprise, McGraw-Hill, 1960.
McNaugher, T. L., Risks and Rushing: The Causes and Costs of Production

Concurrency", Statement prepared for the House Committee on
Government Reform, Subcommittee on National Security, Veterans
Affairs, and International Relations, hearings entitled Joint Strike
Fighter (JSF) Acquisition Reform: Will It Fly?, 2000,
http://www.fas.org/man/congress/2000/000510-
mcnaugher_may_10.htm, accessed on April 5, 2001.

Meilich, A. and Rickels, M., 1999, An Application of Object Oriented Systems
Engineering (OOSE) To an Army Command and Control System: A
New Approach to Integration of System and Software Requirements
and Design, proceedings of the 9th International INCOSE Symposi-
um.

Memory Jogger, "Memory Jogger," GOAL/QPC, Mathuen, MA, 1985.
Menrad, R. and Larson, W., 2008, Development of a NASA integrated tech-

nical workforce career development model entitled: Requisite occu-
pation competencies and knowledge --the ROCK, proceedings of the
59th International Astronautical Congress (IAC).

Menzes, T., Easterbrook, S., Nuseibeh, B. and Waugh, S., 1999, An empirical
investigation of multiple viewpoints reasoning in requirements en-
gineering, proceedings of IEEE International Symposium on Re-
quirements Engineering.

Mesarovic, M. D. (Editor), Views on General Systems Theory, Wiley, New
York, 1964.

Metzger, L. S. and Bender, L. R., MITRE Systems Engineering (SE) Competency
Model Version 1.13E, The MITRE Corporation, 2007.

Metzger, P. W. and Boddie, J., Managing a Programming Project Processes
and People, Prentice Hall PTR, Upper Saddle River, NJ, 1996.

Microsoft, Transforming Education: Assessing and Teaching 21st Century
Skills, 2008a,
http://download.microsoft.com/download/6/E/9/6E9A7CA7-0DC4-
4823-993E-A54D18C19F2E/Transformative%20Assessment.pdf, ac-
cessed on 20 March 2009.

---, Transforming Education: Assessing and Teaching 21st Century Skills,,
2008b,
http://download.microsoft.com/download/6/E/9/6E9A7CA7-0DC4-
4823-993E-A54D18C19F2E/Transformative%20Assessment.pdf, ac-
cessed on 20 March 2009.

References

498

MIL-HDBK-61A, Military Handbook: Configuration Management Guidance,
Department of Defense, 2001.

MIL-STD-490A, Specification Practices, United States Department of Defense,
1985.

MIL-STD-499, Mil-STD-499 Systems Engineering Management, United States
Department of Defense (USAF), 1969.

MIL-STD-499A, Mil-STD-499A Engineering Management, United States De-
partment of Defense (USAF), 1974.

MIL-STD-499B, Mil-STD-499B Systems Engineering, United States Depart-
ment of Defense, 1992.

---, Draft MIL-STD-499B Systems Engineering, United States Department of
Defense, 1993.

MIL-STD-2167A, Defense System Software, United States Department of De-
fense, 1998.

Miles, R. F., Systems Concepts, Wiley, New York, 1973.
Miller, G., The Magical Number Seven, Plus or Minus Two: Some Limits on

Our Capacity for Processing Information., The Psychological Review
63 (1956), 81-97.

Milne, A. A., The Christopher Robin Story Book, Methuen Children's Books,
London, 1929.

Moore, J. W., Software Engineering Standards A User's Road Map, IEEE
Computer Society, Los Alamitos, CA., 1998.

Morton, J. A., Integration of Systems Engineering with Component Develop-
ment, Electrical Manufacturing 64 (1959), no. August 1959, 85-92.

Mueller, D. M., Capability Systems Life Cycle Management Guide, November
1, 2001, Department of Defence, Australian Defence Organisation,
Canberra, ACT, 2001.

Murray, H. A., Explorations in Personality, Oxford University Press, 1938.
Myers, G., The Art of Software Testing, Wiley, 1979.
NASA, NASA Systems Engineering Handbook - draft September 1992, 1992a.
---, NASA Systems Engineering Handbook, draft, September 1992, 1992b.
---, NASA's systems engineering competencies, 2010,

http://www.nasa.gov/pdf/303747main_Systems_Engineering_Com
petencies.pdf, accessed on 29 August 2011.

NDIA E&T, December 8, 2010 Meeting: Education & Training Committee Re-
port, NDIA, 2010.

Newland, K. E., 1998, Risks Associated with the Application of Systems Engi-
neering, proceedings of Fourth Annual Symposium of the INCOSE-
UK.

Newton, I., Hypothesis of Light, 1675.
O'Reilly, J., 2004, Message from the President of the IEE, proceedings of The

International Engineering Management Conference.
O’Toole, P., 2004, Do's and Don'ts of Process Improvement, proceedings of

2005 U.S. Census Bureau SEPG Conference.

References

499

OASIG, The performance of information technology and the role of human
and organizational factors. Report to the Economic and Social Re-
search Council, UK, 1996,
http://www.shef.uc.uk/~iwp/publications/reports/itperf.html, ac-
cessed on January 16, 2002.

Ogren, I., Comment on the use case Requirements Oxymoron, INSITE 4
(2001), no. 3.

OPM, Policies and instructions, U.S. Office of Personnel Management, 2009,
http://www.opm.gov/qualifications/policy/index.asp, accessed on
29 October 2009.

OVAE, Problem-Solving Process, Office of Vocational and Adult Education
(OVAE), US Department of Education, 2005, http://www.c-
pal.net/course/module3/pdf/Week3_Lesson21.pdf, accessed on 11
Jan 2009.

Palmer, S. R. and Felsing, J. M., A Practical Guide to Feature - Driven Devel-
opment, Prentice Hall, 2002.

Paul, R. and Elder, L., Critical Thinking: learn the tools the best thinkers use -
concise ed., Pearson Prentice Hall, 2006.

Pearson, W. D., 2000, The Role of Test and Evaluation: A United States Air
Force Perspective, proceedings of Fourth Test and Evaluation Inter-
national Aerospace Forum.

Pennell, L. W. and Knight, F. L., Draft MIL-STD 499C Systems Engineering, The
Aerospace Corporation, 2005.

Perry, W. E., Effective Methods for Software Testing, John Wiley & Sons,
2000.

Peter, L. J. and Hull, R., The Peter Principle, William Morrow & Company, Inc,
New York, 1969.

Peters, J. F. and Pedrycz, W., Software Engineering An Engineering Approach,
John Wiley & Sons, Inc., New York, 2000.

Peters, T., Thriving on Chaos: Handbook for a Management Revolution, Har-
per and Row, 1987.

Peters, T. and Austin, N., A Passion for Excellence, Warner Books, 1985.
Peters, T. J. and Waterman, H. R., In Search of EXCELLENCE, Harper and Row,

1982.
Pfleeger, S. L., Software Engineering Theory and Practice, Prentice Hall, New

Jersey, 1998.
Phillips, D., The Software Project Manager's Handbook Principles that Work

at Work, IEEE Computer Society, Los Alamitos, CA., 1998.
Pike, J., M247 Sergeant York DIVAD, 1999, http://www.fas.org/man/dod-

101/sys/land/m247.htm,, accessed on April 5, 2001.
---, Joint Strike Fighter (JSF), 2000, http://www.fas.org/man/dod-

101/sys/ac/jsf.htm, accessed on April 5, 2001.
PMI, A Guide to the Project Management Body of Knowledge (PMBOK

Guide), Project Management Institute, 2004.

References

500

Powell, R. A. and Buede, D., 2006, Innovative Systems Engineering: A Crea-
tive System Development Approach, proceedings of the 16th Inter-
national Symposium of the International Council on Systems Engi-
neering (INCOSE).

Pressman, R. S., Software Engineering A Practitioner's Approach, McGraw-
Hill, 2005.

Priest, J. W. and Sánchez, J. M., Product Development and Design for Manu-
facturing, Marcel Dekker, 2001.

Prieto-Díaz, R. (Editor), Classification of Reusable Models published in Soft-
ware Reusability, 1987, ACM Press, 1987.

Rechtin, E., Systems Architecting, Creating & Building Complex Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1991.

Reid, P. P., Compton, W. D., Grossman, J. H. and Fanjiang, G. (Editors), Build-
ing a Better Delivery System: A New Engineering/Health Care Part-
nership, The National Academies Press, Washington, D.C., 2005.

Rhodes, D. H., 2002, Systems Engineering on the Dark Side of the Moon, pro-
ceedings of the 12th International Symposium of the INCOSE.

Richmond, B., Systems thinking: critical thinking skills for the 1990s and be-
yond, System Dynamics Review 9 (1993), no. 2, 113-133.

Rittel, H. W. and Webber, M. M., Dilemmas in a General Theory of Planning,
Policy Sciences 4 (1973), 155-169.

Robson, P. G., 2001, Systems Engineering - In Retrospect and in Prospect,
proceedings of Fifth Annual Symposium of the INCOSE-UK.

Rodgers, T. J., Taylor, W. and Foreman, R., No-excuses Management, Dou-
bleday, 1993.

Roe, C. L., 1995, The Role of the Project Manager in Systems Engineering,
proceedings of The 5th Annual International Symposium of the
NCOSE.

Rook, P., Controlling software projects, Software Engineering Journal 1
(1986), no. 1, 7-16.

Roy, R. H., "The Development and Future of Operations Research and Sys-
tems Engineering," Operations Research and Systems Engineering,
C. D. Flagle, W. H. Huggins and R. H. Roy (Editors), Johns Hopkins
Press, Baltimore, 1960.

Royce, W. W., 1970, Managing the Development of Large Software Systems,
proceedings of IEEE WESCON.

Saaty, T., The Analytic Hierarchy Process, McGraw Hill, New York, NY, 1980.
Saaty, T., Decision Making for Leaders, RWS Publications, Pittsburgh, PA,

1990.
Sage, A. P., Systems Engineering, John Wiley & Sons, Ltd., 1992.
Saxe, J. G., The Poems of John Godfrey Saxe, Complete edition, James R. Os-

good and Company, Boston, 1873.
SBA, Small Business Research Summary, U.S. Small Business Administration,

1982.

References

501

Schach, S., Object-Oriented and Classical Software Engineering, McGraw Hill,
2002.

Scott, W., Kasser, J. E. and Tran, X.-L., 2006, Improving the Structure and
Content of the Requirement Statement, proceedings of The 16th In-
ternational Symposium of the International Council on Systems En-
gineering (INCOSE).

Scuderi, P. V., What is a System, 2004,
http://www.wsu.edu:8001/vwsu/gened/learn-
modules/top_system/resources/system.html, accessed on July 1.

Selby, R. W., 2006, Enabling Measurement-Driven System Development by
Analyzing Testing Strategy Tradeoffs, proceedings of The 16th In-
ternational Symposium of the INCOSE.

Senge, P. M., The Fifth Discipline: The Art & Practice of the Learning Organi-
zation, Doubleday, New York, 1990.

Shaw, G. B., England and America: Contrasts," a conversation between Ber-
nard Shaw and Archibald Henderson, Reader's Digest (1925).

Sheard, S. A., 1996, Twelve Systems Engineering Roles, proceedings of The
6th Annual International Symposium of the NCOSE.

---, 2003, Process Implementation, proceedings of The 13th Annual Symposi-
um of the INCOSE.

Shenhar, A. J. and Bonen, Z., The New Taxonomy of Systems: Toward an
Adaptive Systems Engineering Framework, IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part A: Systems and Humans 27
(1997), no. 2, 137 - 145.

Shinner, S. M., A Guide to Systems Engineering Management, Lexington
Books, Lexington Massachusetts, 1976.

Shlaer, S. and Mellor, S. J., Object Oriented Systems Analysis, Yourdon Press,
1988.

Shumate, K. and Keller, M., Software Specification and Design A Disciplined
Approach for Real-Time Systems, John Wiley & Sons Inc., 1992.

Sillitto, H., 2008, Systems and System-of-Systems Architecting, proceedings
of DSTL Systems Skills Symposium, The Defence Science and Tech-
nology Laboratory (Dstl).

Singh, R. (Editor), ISO 12207 International Standard on Software Lifecycle
Processes, 1995.

Sommerville, I., Software Engineering, Addison-Wesley, 1998.
Squires, A., "Qualifying Exam: Systems Thinking and K12 Education," Stevens

Institute of Technology, Hoboken, NJ., 2007.
Squires, A., Wade, J., Dominick, P. and Gelosh, D., 2011, Building a compe-

tency taxonomy to guide experience acceleration of lead program
systems engineers, proceedings of the 9th conference on systems
engineering research (CSER 2011).

References

502

STDADS, ST DADS Requirements Analysis Document (FAC STR-22), Rev. C,
August 1992, as modified by the following CCR's:- 139, 146, 147C,
150 and 151B, NASA/Ford AeroSpace, Greenbelt, MD, 1992.

Stevens, K. L., 2003, DMSMS Tutorial 1 - Session 1, proceedings of The 2003
DoD Diminishing Manufacturing Sources and Materials Shortages
(DMSMS) Conference.

Sutcliffe, A., Galliers, J. and Minocha, S., 1999, Human Errors and System
Requirements, proceedings of IEEE International Symposium on Re-
quirements Engineering.

Swarz, R. S. and DeRosa, J. K., 2006, A Framework for Enterprise Systems
Engineering Processes, proceedings of International Conference on
Computer Science, Engineering and Applications (ICSSEA).

Szyperski, C., Component Software, Addison Wesley, 1997.
Taylor, F. W., The Principles of Scientific Management, Harper & Brothers

Publishers, 1911.
Thomas, J. A., 2011, Energy-Environment-Economic System of Systems, pro-

ceedings of 5th Asia-Pacific Conference on Systems Engineering.
Thome, B. (Editor), Systems Engineering Principles and Practice of Computer-

based Systems Engineering, John Wiley & Sons, 1993.
Tittle, P., Critical Thinking: An appeal to reason, Routledge, 2011.
Todaro, R. C., "Lecture Handout, ENEE 648R," University of Maryland Univer-

sity College, 1988.
Tran, X.-L. and Kasser, J. E., 2005, Improving the recognition and correction of

poorly written requirements, proceedings of The Systems Engineer-
ing Test and Evaluation (SETE) Conference.

---, 2007, Systems Engineering Tools for Australian Small and Medium Enter-
prises, proceedings of the Asia Pacific Systems Engineering Confer-
ence.

UML, OMG Unified Modeling Language Specification Version 1.3, OMG,
1999.

---, Unified Modeling Language: Superstructure, OMG, 2005.
UNiSA, "Module 7: Introduction to Traditional Systems Engineering and Life

Cycle Modelling," Systems Engineering for Complex Problem Solv-
ing, University of South Australia, Adelaide, Australia, 2006.

Van Gaasbeek, J. R. and Martin, J. N., 2001, Getting to Requirements: The
W5H Challenge, proceedings of The 11th Annual Symposium of the
INCOSE.

Van Vliet, H., Software Engineering Principles and Practice, John Wiley &
Sons Ltd., 2000.

Verma, D., Larson, W. and Bromley, L., 2008, Space systems engineering: An
academic program reflecting collaboration between government,
industry and academia (open academic model), proceedings of hte
59th International Astronautical Congress (IAC).

References

503

Von_Knethen, A., Paech, B., Kiedaisch, F. and Houdek, F., 2002, Systematic
Requirements Recycling through Abstraction and Traceability, pro-
ceedings of IEEE Joint International Conference on Requirements
Engineering.

VOYAGES, Unfinished Voyages, A follow up to the CHAOS Report, 1996,
http://www.pm2go.com/sample_research/unfinished_voyages_1.a
sp, accessed on January 21, 2002.

Ward, P. T. and Mellor, S. J., Structured Development for Real-Time Systems,
Yourdon Press, 1985.

Wasson, C. S., System Analysis, Design, and Development concepts, principles
and practices, Wiley-Interscience, Hoboken, New Jersey, 2006.

Watts, J. G. and Mar, B. W., 1997, Important Skills and Knowledge to Include
in Corporate Systems Engineering Training Programs, proceedings
of The 7th Annual International Symposium of the INCOSE.

Webster, Merriam-Webster Online Dictionary, 2004,
http://www.webster.com, accessed on 12 January 2004.

Weinberg, G. M., The Psychology of Computer Programming, Silver Anniver-
sary Edition, Dorset House Publishing, 1998.

Welby, S., 2010, DoD Systems Engineering Update, proceedings of 36th Air
Armament Symposium.

West, M., 2010, Improving Performance Through Process Improvement, pro-
ceedings of the 10th Annual CMMI Technology Conference and Us-
er Group.

Westerman, H. R., Systems Engineering Principles and Practice, Artech
House, Boston, 2001.

Wheatcraft, L. S., 2011, Triple Your Chance of Project Success Risk and Re-
quirements, proceedings of the 21st Annual Symposium of the
INCOSE.

Williams, T. J., Systems Engineering for the Process Industries, McGraw-Hill,
1961.

Wilson, W. E., Concepts of Engineering System Design, McGraw-Hill Book
Company, 1965.

Wolcott, S. K. and Gray, C. J., Assessing and Developing Critical Thinking
Skills, 2003,
http://www.wolcottlynch.com/Downloadable_Files/IUPUI%20Hand
out_031029.pdf, accessed on

Wood, J. and Silver, D., Joint Application Development, John Wiley and Sons
Inc., 1995.

Woolfolk, A. E., "Chapter 7 Cognitive views of learning," Educational Psy-
chology, Allyn and Bacon, Boston, 1998, pp. 244-283.

Wymore, A. W., Systems Engineering Methodology for Interdisciplinary
Teams, John Wiley and Sons, 1976.

---, Model-Based Systems Engineering, CRC Press, Boca Raton, 1993.

References

504

---, Model-Based Systems Engineering, Systems Engineering: The Journal of
INCOSE 1 (1994), no. 1, 83-92.

Wynne, M. W., "Policy for Systems Engineering in DoD," Memo by Undersec-
retary of Defense for Acquisition, Technology, and Logistics, Wash-
ington, DC, 2004.

Wynne, M. W. and Schaeffer, M. D., Revitalization of Systems Engineering in
DoD, Defense AT&L (2005), 14-17.

Yen, D. H., The Blind Men and the Elephant, 2008,
http://www.noogenesis.com/pineapple/blind_men_elephant.html,
accessed on 26 October 2010.

Yourdon, E., Decline & Fall of the American Programmer, Yourdon Press,
1993.

Yourdon, E. and Argila, C., Object Oriented Analysis and Design, Yourdon
Press, 1993.

Index

505

33Index
absolving, 389, 409, 463
active listening, 129, 130, 131
adaptive, 14, 24, 26, 47, 57, 58,

199, 202
ADATS, 149, 475
analysis, 19, 39, 46, 54, 55, 63, 77,

83, 100, 101, 122, 125, 127,
152, 153, 154, 155, 157, 168,
173, 175, 180, 181, 182, 183,
186, 187, 196, 206, 209, 211,
213, 214, 216, 224, 229, 253,
255, 275, 278, 284, 287, 291,
303, 306, 307, 308, 318, 319,
321, 325, 337, 339, 342, 347,
349, 350, 354, 360, 386, 389,
391, 394, 440, 441, 447, 450,
454, 458, 459, 467

anticipatory testing, 34
Anticipatory Testing, 67, 97, 98,

184, 185
big picture, 14, 133, 332, 428, 459
BPR, 19, 21, 23, 24, 47, 63, 206,

475
CASE, 79, 84, 116, 475
cataract, 67, 167, 174, 187, 276
Cataract Methodology, 4, 40, 89,

167, 173, 176, 187, 188, 192,
196, 197

CCB, 98, 101, 140, 159, 176, 179,
182, 184, 185, 186, 187, 192,
195, 196, 234, 475, 476

change management, 101, 109,
111, 116, 148, 150, 170, 291

CMM, 65, 75, 76, 86, 88, 92, 106,
116, 121, 122, 140, 164, 274,
276, 277, 288, 293, 294, 295,
368, 475

Cobb’s paradox, 89, 207

cognitive filter, 246, 247, 249,
250, 253, 254, 256, 257, 258,
260, 265, 266, 267

complex, iii, v, 1, 18, 38, 39, 113,
116, 121, 125, 131, 138, 150,
152, 153, 154, 155, 157, 158,
189, 201, 202, 210, 217, 235,
238, 239, 242, 244, 245, 246,
247, 249, 253, 255, 256, 271,
275, 283, 299, 305, 306, 317,
318, 319, 321, 338, 354, 373,
391, 420, 421, 461, 462, 463,
468, 473

complex system, 246, 253, 256
complexity, 15, 24, 40, 106, 138,

145, 199, 201, 206, 221, 241,
245, 246, 249, 250, 253, 254,
255, 256, 265, 266, 304, 305,
311, 318, 321, 381, 386, 420,
421, 422, 443, 463, 466

complicated, 141, 157, 170, 197,
216, 224, 250, 253, 257, 306,
332, 421, 436, 444, 468

configuration control, 22, 37, 55,
57, 103, 104, 157, 169, 176,
178, 180, 184, 187, 192, 289

consequences, ii, 58, 66, 115,
205, 241, 431, 432, 436, 443,
473

continuum, 43, 45, 334, 342, 432,
440

COTR, 185, 186, 475
COTS, 112, 113, 174, 212, 340,

344, 349, 449, 475
CRIP, 68, 69, 70, 71, 72, 73, 74,

88, 104, 187, 232, 236, 238,
475

CRIP Charts, 68, 72, 73, 187
critical chain, 73

Index

506

critical thinking, v, 303, 373, 379,
381, 386, 389, 390, 398, 463,
465

decision, 24, 36, 38, 39, 40, 51,
100, 103, 122, 139, 148, 153,
157, 172, 180, 183, 200, 205,
207, 232, 276, 280, 290, 292,
305, 319, 320, 321, 330, 336,
337, 340, 341, 342, 357, 370,
391, 415, 464

DERA, 173, 175, 177, 202, 462,
475

differences, 68, 82, 105, 115, 126,
147, 165, 200, 221, 247, 269,
279, 281, 294, 301, 302, 312,
371, 377, 392, 393, 410, 449

Dilbert, 15, 24
dissolving, 389, 409, 463
DIVAD, 144, 149, 475
DOD, 116, 128, 145, 150, 261,

365, 373, 416, 423, 430, 437,
450, 459, 462, 475

DODAF, 128, 214, 245, 256, 475
DR, 176, 180, 187, 475
DT&E, 107, 475
emergent properties, 112, 149,

214, 219, 242, 243, 247, 248,
249, 344, 468

errors, v, 51, 130, 209, 226, 234,
394, 395, 451, 454, 460

evolutionary acquisition, 68, 138,
149

Excellence paradigm, 21, 25, 26,
37, 42, 45

external, 8, 39, 44, 47, 108, 119,
123, 151, 177, 189, 190, 191,
192, 193, 219, 241, 243, 244,
245, 250, 252, 260, 266, 267,
283, 317, 321, 381, 421, 440,
441

FRE, 475
FREDIE, 4, 38, 97, 101, 102, 103,

104, 109, 111, 112, 175, 187,
230, 475

function, 8, 11, 19, 23, 38, 62, 73,
88, 98, 104, 107, 109, 112,
116, 120, 126, 135, 145, 146,
153, 156, 157, 184, 199, 203,
206, 210, 215, 219, 221, 227,
233, 234, 242, 243, 245, 249,
271, 275, 276, 277, 278, 279,
280, 281, 293, 306, 330, 334,
335, 336, 337, 339,343, 345,
346, 348, 350, 356, 357, 361,
372, 373, 375, 386, 394, 409,
416, 419, 420, 429, 434, 435,
447, 464

functional, 13, 14, 24, 29, 110,
122, 123, 128, 152, 157, 205,
209, 210, 211, 213, 214, 215,
219, 220, 221, 225, 226, 230,
234, 238, 271, 276, 308, 321,
324, 325, 330, 337, 339, 343,
346, 348, 350, 355, 402, 408,
409, 443, 444, 445, 452, 462

generic, 52, 110, 111, 114, 116,
118, 135, 180, 243, 244, 260,
307, 311, 337, 343, 350, 371,
383, 399, 405, 440, 466, 467

holistic thinking, v, 2, 327, 373,
389, 433, 439, 440, 441, 463,
469, 473

HTP, v, 389, 440, 473, 475
IDE, 39, 40, 197, 220, 475
ill-structured, 216
INCOSE, iv, 3, 4, 5, 6, 17, 94, 95,

155, 162, 163, 226, 326, 327,
356, 358, 363, 374, 377, 378,
387, 398, 415, 457, 458, 459,
461, 465, 466, 468, 475

innovative, iii, v, 26, 57, 58, 59,
104, 261, 327, 337, 356, 392,
464, 473

internal, 7, 43, 47, 62, 127, 147,
151, 158, 190, 211, 241, 243,
245, 246, 249, 250, 252, 255,
266, 267, 342, 343, 355, 381,
421, 440, 441

Index

507

IPPT, 100, 182, 183, 186, 187, 475
IPT, 22, 34, 37, 117, 126, 475
ISO, 17, 22, 23, 48, 65, 75, 76, 86,

88, 92, 116, 275, 276, 277,
278, 294, 302, 326, 368, 378,
402, 414, 467, 475

IT, 32, 89, 199, 200, 475
IV&V, 76, 78, 80, 83, 84, 106, 114,

185, 203, 475
JSF, 146, 147, 149, 150, 365, 475
learning, 21, 31, 37, 160, 278,

329, 330, 390, 391
LEO, 110, 476
LOC, 141, 142, 258, 331, 334, 336,

337, 338, 340, 341, 342, 343,
344, 345, 346, 348, 349, 350,
351, 476

LuZ, 25, 140, 141, 172, 257, 267
MATO, 262, 265, 476
MBNQA, 22, 32, 160, 476
MBWA, 14, 305, 476
methodology, 12, 40, 56, 66, 67,

68, 76, 77, 89, 99, 101, 102,
109, 116, 118, 126, 153, 159,
167, 168, 169, 173, 175, 176,
178, 187, 191, 201, 204, 209,
211, 214, 217, 219, 226, 229,
258, 275, 276, 277, 278, 281

middle management, 15, 16, 24,
25, 51, 62, 89, 207

model, 25, 26, 40, 42, 48, 67, 93,
97, 98, 117, 122, 127, 156,
157, 158, 161, 162, 163, 164,
169, 202, 211, 214, 217, 221,
233, 242, 249, 283, 284, 285,
289, 311, 319, 320, 321, 354,
370, 371, 372, 376, 377, 380,
381, 382, 383, 386, 388, 394,
395, 398, 399, 401, 402, 414,
415, 417, 418, 431, 449, 451,
453

MTBF, 145, 220, 476
MTTR, 220, 476

NASA, iv, 17, 25, 38, 140, 144,
159, 227, 275, 292, 373, 377,
381, 387, 427, 429, 430, 433,
434, 437, 449, 476

NCOSE, 4, 11, 12, 17, 457, 460,
466, 476

network centric, 39, 40, 220, 292
NGT, 303
NST, 34, 476
O&M, 178, 188, 476
OCD, 103, 175, 218, 228, 444,

445, 452, 476
ODC, 476
OOM, 116, 476
operational, 103, 134, 137, 138,

145, 148, 149, 152, 153, 154,
156, 158, 167, 176, 191, 203,
238, 243, 260, 309, 330, 340,
343, 354, 356, 375, 389, 422,
429, 431, 432, 433, 444, 452,
462

opportunity, 297
organizational engineering, 27, 38
Organizational Engineering, 3, 5,

33, 98
OT&E, 107, 476
outcome, 146, 363, 464
output, 210, 220, 259, 308, 309,

331, 409, 473
PAM, 34, 35, 36, 476
paradigm, 4, 9, 11, 15, 19, 21, 24,

25, 26, 27, 29, 32, 37, 42, 45,
46, 47, 57, 61, 64, 68, 76, 86,
89, 97, 98, 100, 102, 104, 108,
120, 125, 126, 138, 148, 149,
150, 159, 167, 180, 184, 189,
197, 199, 200, 201, 202, 203,
206, 207, 208, 209, 210, 211,
212, 215, 216, 219, 220, 223,
224, 225, 226, 227, 228, 229,
230, 232, 233, 234, 235, 236,
238, 239, 241, 245, 247, 249,
254, 256, 266, 284, 289, 290,
291, 295, 300, 304, 305, 308,

Index

508

313, 318, 321, 322, 328, 330,
356, 357, 361, 366, 367, 368,
411, 416, 421, 423, 428, 437,
439, 440, 448, 449, 450, 451,
453, 454, 455, 457, 459, 460,
464, 465, 466, 468, 469, 473

PDCA, 22, 55, 56, 476
PDR, 170, 476
PERCY, 39, 40, 104, 476
perspectives perimeter, 332, 440
PERT, 28, 34, 52, 65, 75, 220, 274,

409, 476
PIT, 37, 55, 56, 58, 476
PPPT, 26, 48, 98, 156, 158, 159,

160, 163, 307, 476
problem, v, 1, 2, 8, 11, 12, 15, 24,

32, 38, 40, 41, 42, 68, 71, 72,
73, 79, 83, 84, 85, 92, 93, 95,
96, 97, 104, 107, 115, 117,
118, 123, 128, 129, 130, 135,
143, 148, 154, 164, 167, 176,
182, 187, 189, 191, 197, 201,
211, 216, 221, 223, 225, 228,
239, 241, 243,246, 247, 249,
250, 253, 256, 257, 261, 265,
266, 280, 292, 297, 298, 300,
302, 303, 305, 306, 307, 308,
309, 310, 311, 318, 319, 321,
326, 330, 331, 342, 344, 347,
349, 350, 356, 357, 359, 360,
362, 366, 367, 368, 370, 382,
383, 386, 388, 389, 390, 391,
392, 399, 401, 402, 404, 405,
407, 409, 410, 411, 412, 414,
421, 422, 423, 424, 429, 430,
431, 433, 434, 439, 442, 446,
448, 451, 453, 455, 457, 459,
460, 461, 463, 464, 466, 467,
468, 469, 470, 471, 473

process, 2, 7, 8, 12, 16, 17, 18, 21,
22, 23, 24, 26, 28, 29, 32, 33,
34, 36, 37, 38, 39, 40, 43, 44,
45, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 59, 61, 62, 63, 64,

66, 67, 68, 72, 73, 76, 77, 78,
79, 81, 82, 84, 85, 86, 88, 97,
98, 99, 100, 101, 102, 103,
104, 105, 106, 110, 114, 116,
117, 118, 121, 122, 126, 130,
136, 137, 138, 139, 140, 143,
152, 153, 154, 155, 157, 158,
159, 160, 163, 167, 168, 169,
171, 172, 173, 174, 176, 178,
180, 184, 185, 186, 187, 189,
193, 195, 197, 199, 200, 201,
203, 204, 206, 207, 208, 209,
210, 211, 213, 215, 216, 217,
220, 221, 223, 224, 225, 226,
227, 229, 230, 232, 233, 234,
235, 236, 237, 238, 239, 241,
242, 246, 248, 249, 250, 253,
260, 261, 265, 267, 269, 270,
272, 273, 274, 275, 276, 277,
278, 280, 281, 282, 283, 284,
286, 288, 289, 290, 291, 292,
293, 294, 295, 476

process improvement, 2, 7, 8, 21,
22, 23, 34, 37, 44, 47, 55, 56,
59, 66, 86, 97, 207, 274, 276,
294, 476

progressive, 440, 441
project management, 2, 7, 11, 13,

16, 24, 104, 139, 184, 197,
200, 204, 205, 220, 228, 229,
269, 270, 271, 272, 273, 274,
275, 279, 280, 281, 282

PSP, 121, 122, 476
QSE, 100, 101, 102, 109, 170, 175,

185, 187, 196, 229, 230, 235,
237, 476

Quality, 2, 3, 7, 14, 16, 17, 21, 22,
23, 25, 32, 33, 34, 52, 53, 79,
84, 85, 86, 98, 99, 100, 103,
104, 105, 107, 109, 112, 114,
158, 159, 207, 219, 224, 275,
276, 286, 476, 477

Quality-Index, 32

Index

509

quantitative, 330, 331, 336, 341,
343, 440, 441

remedying, 225, 463
requirements engineering, 8, 12,

97, 101, 104, 109, 126, 148,
157, 202, 214, 223, 224, 228,
231, 233, 235, 236, 238, 291

resolving, 389, 409, 463
RFP, 66, 262, 263, 476
risk, 14, 65, 72, 75, 77, 78, 80, 81,

82, 83, 85, 86, 88, 89, 90, 91,
101, 103, 118, 139, 169, 171,
172, 173, 175, 176, 181, 183,
185, 186, 224, 229, 232, 235,
237, 257, 279, 280, 288, 289,
290, 311, 312, 327, 330, 331,
337, 340, 341, 342, 343, 344,
346, 347, 355, 366

ROI, 54, 55, 476
RRS, 28, 31, 42, 43, 45, 61, 63, 64,

476
RTM, 97, 102, 109, 291, 476
SBA, 261, 476
SCADC, 140, 145, 146, 149, 476
SCCB, 192, 193, 196, 197, 476
scientific, 58, 152, 153, 265, 298,

300, 330, 337, 433, 461, 468
SDB, 261, 262, 263, 264, 476
SDLC, 8, 12, 13, 14, 65, 66, 67, 68,

69, 70, 73, 75, 76, 78, 88, 89,
97, 98, 99, 100, 101, 104, 105,
106, 107, 108, 109, 111, 115,
133, 134, 143, 161, 162, 167,
171, 172, 175, 176, 179, 180,
182, 184, 186, 187, 188, 189,
190, 191, 192, 209, 218, 221,
225, 226,227, 228, 235, 254,
271, 272, 275, 277, 281, 282,
284, 289, 321, 324, 325, 326,
353, 369, 424, 429, 430, 431,
433, 435, 436, 437, 442, 443,
444, 445, 446, 449, 467, 468,
469, 476

SDR, 215, 476

SEBOK, 151, 155, 156, 157, 160,
161, 164, 165, 200, 201, 202,
208, 270, 476

SEGS, 25, 140, 141, 142, 172, 257,
267, 329, 330, 331, 332, 334,
335, 340, 345, 351, 430, 431,
432, 449, 476

selection criteria, 409, 410, 434
self-regulating, 32, 193, 195, 196,

246, 258, 259, 260
SEMP, 103, 175, 228, 229, 443,

476
similarities, 129, 392, 393
Simplicity, 106, 241, 253, 254,

255, 256, 257, 263, 266, 267
simulation, 157, 431
SLC, 107, 117, 118, 124, 125, 134,

167, 176, 178, 179, 182, 184,
186, 187, 188, 189, 190, 191,
192, 193, 196, 218, 223, 226,
228, 229, 234, 235, 237, 238,
362, 468, 477

solution, 1, 6, 40, 89, 95, 97, 117,
118, 129, 139, 140, 144, 149,
150, 152, 175, 182, 206, 212,
221, 223, 225, 228, 238, 241,
246, 249, 284, 292, 297, 307,
308, 309, 310, 330, 336, 337,
342, 350, 356, 359, 362, 363,
366, 367, 368, 375, 383, 386,
388, 389, 391, 399, 402, 404,
405, 406, 409, 410, 411, 412,
418, 419, 424, 427, 428, 429,
430, 431, 432, 433, 434, 436,
437, 442, 443, 444, 446, 448,
449, 450, 452, 453, 459, 460,
461, 464, 466, 467, 468, 469,
470, 471

solving, v, 1, 32, 129, 143, 164,
182, 183, 207, 247, 253, 280,
297, 298, 303, 310, 311, 318,
331, 332, 367, 382, 383, 389,
401, 402, 404, 405, 407, 409,
410, 411, 412, 422, 424, 459,

Index

510

460, 461, 463, 466, 467, 468,
473

SOW, 65, 72, 75, 168, 477
Spiral model, 97, 169
SRD, 110, 111, 217, 228, 231, 477
SRR, 168, 175, 176, 178, 215, 225,

236, 290, 477
STOVL, 147, 477
structural, 23, 157, 334, 434, 440,

446
System of Systems, 4, 138, 140,

156, 189, 191, 192, 193, 195,
196, 197, 201, 250, 292

Systems of Systems, 8, 133, 138,
189, 193, 196, 238, 250

systems thinking, v, 9, 43, 156,
247, 260, 300, 303, 306, 310,
322, 360, 363, 373, 379, 380,
381, 382, 386, 389, 440, 441,
455, 459, 463, 465, 469

T&E, 2, 7, 8, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114,
174, 185, 229, 239, 284, 286,
418, 436, 443, 477

temporal, 134, 139, 191, 346,
348, 357, 428, 440

TIGER, 231, 477
TQM, 17, 18, 19, 21, 23, 44, 47,

63, 80, 88, 157, 202, 206, 227,
275, 322, 477

UML, 116, 124, 150, 209, 217,
218, 219, 220, 221, 226, 452,
477

uncertainty, 142, 290, 311, 312
undesirable situation, 225
US, 12, 128, 142, 144, 145, 146,

147, 148, 149, 203, 207, 261,
323, 373, 416, 442, 459, 462,
477

USAF, 107, 141, 146, 147, 148,
149, 477

Use Cases, 97, 120, 164, 176, 213,
218, 219, 220, 226, 237

USMC, 146, 147, 477
USN, 146, 147, 477
WBS, 34, 36, 100, 101, 103, 104,

176, 179, 180, 184, 196, 224,
229, 232, 274, 275, 288, 477

well-structured, 216
weltanschauung, 308, 437
wicked problems, 297, 298, 473

