
Reprinted from the 7th Annual Symposium of the International Council on Systems Engineering Page 1

Copyright Joe Kasser 1997

Yes Virginia,
You Can Build a Defect Free System,

On Schedule and Within Budget.

Joe Kasser
The Anticipatory Testing Corporation

POB. 3419
Silver Spring
MD. 20918

Phone 301 593 3316
E-mail jkasser@iee.org

ABSTRACT
Today’s software and systems development life cycle
paradigm is characterized by large cost overruns,
schedule slips, and dramatic performance deficiencies
in weapon, C4I, and automated information systems.
This paper describes an alternative paradigm that can
produce defect free systems on schedule and within
budget.

INTRODUCTION
According to the [DoD, 1995] today’s software and
systems development life cycle (SDLC) paradigm is
characterized by big cost overruns, schedule slips, and
dramatic performance deficiencies in weapon, C4I, and
automated information systems.

Most people do not realize there is an alternative SDLC
paradigm. The use of elements of this alternative
paradigm enabled the design, development, production,
and installation of a network of approximately 600
microprocessors controlling the solar collector section
of the world's first commercial Solar Electrical Power
Generating Station (SEGS-1) on schedule and within
budget half way around the world from the develop-
ment location. The early phases of the SDLC took place
in Jerusalem, Israel, the installation was near Barstow,
California. The system worked first time on initial
installation with only a single Discrepancy Report (DR)1

in spite of geographic, cultural and language difficul-
ties. In addition, the control system was optimized for a
cost savings of at least $300,000.

The alternative SDLC paradigm uses an integrated
product-process and management approach. Since
systems engineering techniques are used on the
organization as well as on the process and the product,
the paradigm is called organizational engineering and:

C May be used with conventional or object oriented
design methodologies.

C Applies to large, and small systems.

The elements of the organizational engineering
paradigm discussed in this paper, are:

C Partitioning the system
C Partitioning the implementation
C Proactive progress management

PARTITIONING THE SYSTEM
For any system or subsystem, its boundaries are
determined by the observer for the sake of simplifying
the analysis and design activities. The first level of
decomposition of the system is always as shown in
Figure 1. Systems may contain up to five top level
subsystems as appropriate, namely, the:

• User interface - The data display and entry de-
vice(s) which interact with the users. The user

1 for a bad type of cable connector.

Reprinted from the 7th Annual Symposium of the International Council on Systems Engineering Page 2

Copyright Joe Kasser 1997

Figure 1 Top Level System Decomposition

Figure 2 Self Regulating Systems

interface is developed by a single group which
ensures consistency.

C Algorithm executor - The top level subsystem
which carries out the work the system is built to
perform.

C Database(s) - The database components of the
system.

C Operator Window - A window into the system. It
can display all status, alarm, error and event
states, and the contents of buffers. It must be
designed to display data in a hierarchical manner,
with the top level being a simple display of the
status of the system. For example, condition:
C ‘green’. Everything is operating according to

specifications.
C ’yellow’. Minor failures are present, but the

system is operational. For example, a failure
has occurred, but the redundant component
has been activated, or an interface has failed
and part of the system is not operational.

C ‘red’. The system is non operational.

The Operator Window also serves as a major
troubleshooting tool both during system
commissioning and operational troubleshooting.
This feature reduces the need to develop custom
tools to test portions of the system, hence reduc-
ing the cost of the system.

C External interfaces - The interfaces to the external
elements to the system.

Rules for subsystem decomposition. The rules for
decomposing the major subsystems are as follows:

C Minimize coupling and maximize the cohesion of
the functions performed by lower level subsystem
elements. This approach is based on the [Ward and
Mellor, 1985] Methodology and fits nicely into
both object oriented and conventional design
approaches.

C Consider the operator as part of the system - This
approach allows early builds of a system to perform
functions manually, and then provides automated
capabilities in subsequent builds as more is learned
about the system’s behavior. It also allows sys-
tems to be coupled in a well-defined manner. For
example, one system may act as “the operator” for
a second system.

C Self-regulating subsystems - Subsystems are
designed to perform their tasks in a self regulating
manner. The rules for (minimizing) coupling and
(maximizing) cohesion must be observed. The
subsystem transmits status information about
itself, and receives command instructions from
other subsystems. This approach, shown in Figure
2 has many variations. For example:
C Spacecraft or missile control . In an early

implementation of a family of spacecraft for
communications or observations, System A is
on the spacecraft and System B is on the
ground. System B performs complex control
and monitoring functions that System A

Reprinted from the 7th Annual Symposium of the International Council on Systems Engineering Page 3

Copyright Joe Kasser 1997

Figure 3 Railroad Buffers for Signal Passing

cannot. Some System B functions may be
even be performed by human operators and
analysts. As technology matures, or new
technology becomes available, some System
B functions are migrated into System A. The
advantages of this approach include:
C Most of the requirements for later genera-

tions are known, algorithms have been
developed and tested code and require-
ments may be reused for replacement and
later generation spacecraft.

C Faster control responses
C In case of an onboard malfunction of the

migrated functions, System B is still avail-
able on the ground to take over.

C SEGS 1 Sun tracking . Each of the SEGS 1
collectors had to be positioned within ±0.1
degree of the Sun. The sun sensor which
detected when the array was pointed at the
Sun, was mounted on the collector. There was
no specification for the vibration of the collec-
tor due to wind or internal mechanical causes
Each sensor contained a pair of photo diodes
and a shield. There was no specification on
the sun-sensor other than an uncalibrated
output curve showing relative change of
output with sun angle as the Sun passed
across a typical prototype sensor. The com-
puted pointing angle for each collector was a
function of the mounting accuracy of the sun
sensor, the latitude and longitude of the site
and the alignment of the collector array with
respect to North. In addition, there was no
specification for the accuracy of the measure-
ment of these parameters. The principle of self
regulation was applied to develop a success-
ful positioning algorithm that allowed for large
tolerances on all these parameters.

C Railroad buffers for signal passing - This is a key
element to the paradigm. All signals are passed
between processes via buffers at both ends of the
interface as shown in Figure 3. Modules are not
allowed to build and transmit messages on the fly,
or react to messages as they are received. The term
‘railroad buffers’ is used because the interface area
of a system may look like a freight yard at a railroad
station. This element allows modules to be tested
in both a static (standalone) and a dynamic man-

ner. The interface is tested by placing known data
in a transmitter buffer and ensuring the data ap-
pearing in the corresponding receiver buffer is
correct after the necessary event which initiates the
transfer takes place. The modules are tested by
placing data in the receiver buffer, and initiating the
processing task. The data in the output buffer or
the state of the module is then checked to see it
meets the specifications for the processing task.
This element has much in common with client-
server techniques, but may cause a small loss in
performance. These buffers may also be considered
as the software equivalent of hardware test points.

PARTITIONING
THE IMPLEMENTATION

The implementation of the system takes place according
to the following approach:

C Design and implement the structure of the system
C Flesh out in subsequent builds
C Build a little, test a lot
C Anticipate changes
C Budget tolerant methodology
C Cataract approach
C Prevent defects

C Design and implement the structure of the system
The initial Build provides the structure of the

Reprinted from the 7th Annual Symposium of the International Council on Systems Engineering Page 4

Copyright Joe Kasser 1997

system, the user interface and the operator win-
dow.

C

Flesh out in subsequent builds - Once the structure is in
place, elements of the subsystems may be added in an
incremental manner. The actions of the system may be
observed via the user interfaces, and the operation
verified by means of the operator’s window. The
subsystems builds must be synchronized so that the
user interface and operator window subsystems are
updated in advance of the implementation of the algo-
rithms accessed by the interfaces and operator window.
C Build a little, test a lot - With a working user

interface, and operator window, elements of the
system may be built and tested in an incremental
manner using all the best practices. Conventional
SDLC Builds take a minimum of six months. This
approach allows for shorter Builds, of the order of
weeks or even days. Software systems developers
can ship sample copies to selected users for com-
ments well before the release of the complete
product.

C Anticpate changes - Changes are continuous for
various reasons which include changes:
C In the mission definition.
C Due to user reaction to early builds.
C Due to changes in the project budget.

Since changes are common to all projects, the
SDLC must incorporate a change tolerant method-
ology to be successful. Success is defined as a
completed project, which meets its requirement,
and is completed on schedule and within budget.

C Budget tolerant methodology - In today's systems
engineering environment, budgets are decreasing
while needs are remaining constant or even in-
creasing. Consequently, systems must be designed
so that in the event of budget reductions, there is no
need to cancel the project and restart the develop-
ment of a system with lower capability [Denzler,
Kasser, 1995]. The budget-tolerant system devel-
opment methodology is based on the traditional
waterfall SDLC model with enhancements that
require the consideration of the costs and the
importance of the requirements as necessary
elements in the analysis and design processes. The
methodology consists of seven steps:

1. Determine the feasibility of a requirement
2. Develop a complete set of requirements
3. Prioritize the requirements

 4. Cost each requirement
5. Establish a baseline
6. Use the cataract approach to build planning
7. Use effective change management techniques

C Cataract approach - The cataract approach
[Kasser, 1995] plans the system implementation in
a series of Builds wherein each Build contains a
full waterfall or mini SDLC. This approach allows
changes to occur under configuration control. The
cataract approach to Build planning may be likened
to a rapid prototyping scenario in which the
requirements for each Build are frozen at the start
of the Build. This approach, however, is more than
just grouping requirements in some logical se-
quence and charging ahead. Build plans must be
optimized on the product, process, and organization
dimensions as follows:

C Use the waterfall approach for each Build.
This tried-and-true approach works over a
short timeframe.

C Implement the highest priority requirements in
the earlier Builds. Then, if budget cuts occur
during the implementation phase, the lower
priority requirements are the ones that can
readily be eliminated because they were to be
implemented last.

C Make use of the fact that, typically, 20 percent
of the application will deliver 80 percent of the
capability [Arthur, 1992] by providing that 20
percent in the early Builds.

C Produce each Build with some extra degree of
functionality that it can be used by the user
(customer) in a productive manner. This fol-
lows the rule of designing the system in a
structured manner and performing a piecemeal
implementation.

C Allow a factor for the element of change
C Optimize the amount of functionality in a Build

(features versus development time).

Reprinted from the 7th Annual Symposium of the International Council on Systems Engineering Page 5

Copyright Joe Kasser 1997

C Minimize the cost of producing the Build. Bal-
ance the number of personnel available to
implement the build (development, test, and
systems engineers) over the SDLC to minimize
staffing problems during the SDLC.

C Prevent defects - Traditional Quality Assurance and
Testing functions are independent from the Devel-
opment effort and act after the fact. Consequently,
errors are first made and then corrected. This
means the elements in the Work Breakdown Struc-
ture are planned and budgeted as one time efforts,
yet are in fact performed twice, resulting in over-
runs and delays. The anticipatory testing approach
[Kasser, 1995] combines prevention with in-process
testing in a synergistic manner to eliminate defects
in two ways, namely, by:

C Testing - The earlier the testing can be per-
formed in the SDLC, the greater the reduction
in the penalty costs of not doing it right the
first time, so do the testing at well established
checkpoints in the SDLC. These check points
include:
C Concept reviews.
C Implementation (Management) Plans.
C Requirements reviews.
C Design reviews.
C Code walkthroughs.
C Code inspections.
C Test Plan reviews.
C Test Procedure reviews.

C Prevention - According to [Crosby, 1981]
Prevention is planned anticipation and in-
cludes:
C Sensitization to probable defects (train-

ing).
C Improving the process
C Risk management

PROACTIVE
PROGRESS MANAGEMENT

Many of the measurements made in current projects
enable suppliers to improve their processes and prod-
ucts. These may be used for proactive progress man-
agement in several ways, including:

C Improvement of the Quality Index - These measure-
ments may be used to lower the cost of doing work
by improving the Quality-index of the organization

[Kasser, 1996] which is a three dimensional mea-
sure of the:

C Effectiveness of the production process.

C Degree of conformance of the product to its
requirements.

C Effectiveness of the organization in which the
process takes place.

C Use the categorized requirements in process chart
- The budget tolerant methodology categorized
requirements by cost (to implement) and priority.
Tracking the implementation of the categorized
requirements led to a measurement approach called
categorized requirements in process (CRIP) which

C has the potential of providing a measurement
of completeness of the product at any of the
milestones in the SDLC.

C Categorizes the requirements, then quantifies
each category into ranges, and observes
changes in the state of the requirements at the
SDLC reporting milestones

The CRIP approach has the following advantages, it:

C Maybe used at any level of system decomposition.
C Provides a simple way to show progress or the lack

of it, at any reporting milestone. Just compare the
numbers and ask for an explanation of the vari-
ances.

C Provides a window into the project for top manage-
ment (buyer and supplier) to monitor progress.

C Identifies some management and technical prob-
lems as they occur, allowing proactive risk contain-
ment techniques.

C May be built into requirements management, and
other computerized project and design management
tools.

C May be built into Government contracts via the
SOW. Here falsifying entries in the CRIP chart to
show progress is fraud.

SUMMARY
Defect free systems can be built on schedule and within
budget. However, to do so requires integrating the
product, process and organization dimensions. In
addition, this integrated state is not readily achieved in

Reprinted from the 7th Annual Symposium of the International Council on Systems Engineering Page 6

Copyright Joe Kasser 1997

today’s systems and software development organiza-
tions. So Virgina, when you follow the main elements of
the organizational engineering approach to providing
defect free systems on schedule and within budget
described in this paper, remember to sweeten every-
thing with a KISS (Keep it simple stupid).

REFERENCES
Crosby, P.B., The Art of Getting Your Own Sweet Way,

Second Edition, McGraw-Hill Book Company, 1981,
p 131.

Department of Defense, The Program Manager’s Guide
to Software Acquisition Best Practices, Version
1.0, July 1995.

Arthur, L.J., Rapid Evolutionary Development. John
Wiley & Sons, Inc., 1992.

Denzler, D.W.R., Kasser, J.E., “Designing Budget
Tolerant Systems”, The INCOSE 5th International
Symposium, St. Louis, MO, 1995.

Kasser, J.E, Applying Total Quality Management to
Systems Engineering, Artech House, 1995.

Kasser, J.E., “There's No Place For Managers in a
Quality Organization”, The 9th Annual Conference
on Federal Quality, Washington DC., 1996.

Ward, P.T., Mellor, S.J., Structured Development for
Real-Time Systems, Yourdon Press Computing
Series, 1985.

BIOGRAPHY
Joe Kasser earned his doctoral degree in systems
engineering in 1997. He is a recipient of NASA’s
Manned Space Flight Awareness (Silver Snoopy) Award
for quality and technical excellence. He is also an
Institute of Certified Professional Manager's (ICPM's)
Certified Manager and a recipient of the ICPM’s 1993
Distinguished Service Award. He is the author of
Applying Total Quality Management to Systems Engi-
neering published by Artech House. His paper “Systems
Engineering - Myth or Reality” won the Systems
Engineering Management Outstanding Paper Presenta-
tion Award at last year’s symposium.

